Spaces:
Running
Running
File size: 7,153 Bytes
3d0e1d3 d774d12 3d0e1d3 d774d12 3d0e1d3 d774d12 cc698c5 d774d12 cc698c5 d774d12 501ef44 d774d12 501ef44 d774d12 501ef44 d774d12 501ef44 d774d12 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 |
#from dotenv import load_dotenv, find_dotenv
#_ = load_dotenv(find_dotenv())
import solara
from typing import Any, Callable, Optional, TypeVar, Union, cast, overload, List
from typing_extensions import TypedDict
import time
import ipyvue
import reacton
from solara.alias import rv as v
import os
import openai
from openai import OpenAI
import instructor
from pydantic import BaseModel, Field
from graphviz import Digraph
from langsmith import traceable
from langsmith.wrappers import wrap_openai
# NEEDED FOR INPUT TEXT AREA INSTEAD OF INPUT TEXT
def use_change(el: reacton.core.Element, on_value: Callable[[Any], Any], enabled=True):
"""Trigger a callback when a blur events occurs or the enter key is pressed."""
on_value_ref = solara.use_ref(on_value)
on_value_ref.current = on_value
def add_events():
def on_change(widget, event, data):
if enabled:
on_value_ref.current(widget.v_model)
widget = cast(ipyvue.VueWidget, solara.get_widget(el))
if enabled:
widget.on_event("blur", on_change)
widget.on_event("keyup.enter", on_change)
def cleanup():
if enabled:
widget.on_event("blur", on_change, remove=True)
widget.on_event("keyup.enter", on_change, remove=True)
return cleanup
solara.use_effect(add_events, [enabled])
@solara.component
def InputTextarea(
label: str,
value: Union[str, solara.Reactive[str]] = "",
on_value: Callable[[str], None] = None,
disabled: bool = False,
password: bool = False,
continuous_update: bool = False,
error: Union[bool, str] = False,
message: Optional[str] = None,
):
reactive_value = solara.use_reactive(value, on_value)
del value, on_value
def set_value_cast(value):
reactive_value.value = str(value)
def on_v_model(value):
if continuous_update:
set_value_cast(value)
messages = []
if error and isinstance(error, str):
messages.append(error)
elif message:
messages.append(message)
text_area = v.Textarea(
v_model=reactive_value.value,
on_v_model=on_v_model,
label=label,
disabled=disabled,
type="password" if password else None,
error=bool(error),
messages=messages,
solo=True,
hide_details=True,
outlined=True,
rows=1,
auto_grow=True,
)
use_change(text_area, set_value_cast, enabled=not continuous_update)
return text_area
# EXTRACTION
openai.api_key = os.environ['OPENAI_API_KEY']
# Wrap the OpenAI client with LangSmith
client = wrap_openai(OpenAI())
# Patch the client with instructor
client = instructor.from_openai(client, mode=instructor.Mode.TOOLS)
class Node(BaseModel):
id: int
label: str
color: str
class Edge(BaseModel):
source: int
target: int
label: str
color: str = "black"
class KnowledgeGraph(BaseModel):
nodes: List[Node] = Field(description="Nodes in the knowledge graph")
edges: List[Edge] = Field(description="Edges in the knowledge graph")
class MessageDict(TypedDict):
role: str
content: str
def add_chunk_to_ai_message(chunk: str):
messages.value = [
*messages.value[:-1],
{
"role": "assistant",
"content": chunk,
},
]
import ast
# DISPLAYED OUTPUT
@solara.component
def ChatInterface():
with solara.lab.ChatBox():
if len(messages.value)>0:
if messages.value[-1]["role"] != "user":
obj = messages.value[-1]["content"]
if f"{obj}" != "":
obj = ast.literal_eval(f"{obj}")
dot = Digraph(comment="Knowledge Graph")
if obj['nodes'] not in [None, []]:
if obj['nodes'][0]['label'] not in [None, '']:
for i, node in enumerate(obj['nodes']):
if obj['nodes'][i]['label'] not in [None, '']:
dot.node(
name=str(obj['nodes'][i]['id']),
label=obj['nodes'][i]['label'],
color=obj['nodes'][i]['color']
)
if obj['edges'] not in [None, []]:
if obj['edges'][0]['label'] not in [None, '']:
for i, edge in enumerate(obj['edges']):
if obj['edges'][i]['source'] not in [None,''] and obj['edges'][i]['target'] not in [None,''] and obj['edges'][i]['label'] not in [None,'']:
dot.edge(
tail_name=str(obj['edges'][i]['source']),
head_name=str(obj['edges'][i]['target']),
label=obj['edges'][i]['label'],
color=obj['edges'][i]['color']
)
with solara.Card():
solara.display(dot)
messages: solara.Reactive[List[MessageDict]] = solara.reactive([])
aux = solara.reactive("")
text_block = solara.reactive("Alice loves Bob while Charles hates both Alice and Bob.")
@solara.component
def Page():
title = "Knowledge Graph Generator"
with solara.Head():
solara.Title(f"{title}")
with solara.Column(style={"width": "70%", "padding": "50px"}):
solara.Markdown(f"#{title}")
solara.Markdown("Enter some text and the language model will try to describe it as a knowledge graph. Done with :heart: by [alonsosilva](https://twitter.com/alonsosilva)")
user_message_count = len([m for m in messages.value if m["role"] == "user"])
def send():
messages.value = [*messages.value, {"role": "user", "content": " "}]
def response(message):
extraction_stream = client.chat.completions.create_partial(
model="gpt-3.5-turbo",
response_model=KnowledgeGraph,
messages=[
{
"role": "user",
"content": f"Help me understand the following by describing it as small knowledge graph: {text_block.value}",
},
],
temperature=0,
stream=True,
)
for extraction in extraction_stream:
obj = extraction.model_dump()
if f"{obj}" != aux.value:
add_chunk_to_ai_message(f"{obj}")
aux.value = f"{obj}"
def result():
if messages.value != []:
if messages.value[-1]["role"] == "user":
response(messages.value[-1]["content"])
result = solara.lab.use_task(result, dependencies=[user_message_count])
InputTextarea("Enter text:", value=text_block, continuous_update=False)
solara.Button(label="Generate Knowledge Graph", on_click=send)
ChatInterface()
Page()
|