Upload folder using huggingface_hub
Browse files- .github/workflows/update_space.yml +28 -0
- .gitignore +1 -0
- LICENSE +21 -0
- README.md +48 -12
- __pycache__/advanced_rag.cpython-311.pyc +0 -0
- advanced_rag.py +541 -0
- dropdown.py +11 -0
- requirements.txt +49 -0
.github/workflows/update_space.yml
ADDED
|
@@ -0,0 +1,28 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
name: Run Python script
|
| 2 |
+
|
| 3 |
+
on:
|
| 4 |
+
push:
|
| 5 |
+
branches:
|
| 6 |
+
- main
|
| 7 |
+
|
| 8 |
+
jobs:
|
| 9 |
+
build:
|
| 10 |
+
runs-on: ubuntu-latest
|
| 11 |
+
|
| 12 |
+
steps:
|
| 13 |
+
- name: Checkout
|
| 14 |
+
uses: actions/checkout@v2
|
| 15 |
+
|
| 16 |
+
- name: Set up Python
|
| 17 |
+
uses: actions/setup-python@v2
|
| 18 |
+
with:
|
| 19 |
+
python-version: '3.9'
|
| 20 |
+
|
| 21 |
+
- name: Install Gradio
|
| 22 |
+
run: python -m pip install gradio
|
| 23 |
+
|
| 24 |
+
- name: Log in to Hugging Face
|
| 25 |
+
run: python -c 'import huggingface_hub; huggingface_hub.login(token="${{ secrets.hf_token }}")'
|
| 26 |
+
|
| 27 |
+
- name: Deploy to Spaces
|
| 28 |
+
run: gradio deploy
|
.gitignore
ADDED
|
@@ -0,0 +1 @@
|
|
|
|
|
|
|
| 1 |
+
**/.DS_Store
|
LICENSE
ADDED
|
@@ -0,0 +1,21 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
MIT License
|
| 2 |
+
|
| 3 |
+
Copyright (c) 2024 Andrew Nedilko
|
| 4 |
+
|
| 5 |
+
Permission is hereby granted, free of charge, to any person obtaining a copy
|
| 6 |
+
of this software and associated documentation files (the "Software"), to deal
|
| 7 |
+
in the Software without restriction, including without limitation the rights
|
| 8 |
+
to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
|
| 9 |
+
copies of the Software, and to permit persons to whom the Software is
|
| 10 |
+
furnished to do so, subject to the following conditions:
|
| 11 |
+
|
| 12 |
+
The above copyright notice and this permission notice shall be included in all
|
| 13 |
+
copies or substantial portions of the Software.
|
| 14 |
+
|
| 15 |
+
THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
|
| 16 |
+
IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
|
| 17 |
+
FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
|
| 18 |
+
AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
|
| 19 |
+
LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
|
| 20 |
+
OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
|
| 21 |
+
SOFTWARE.
|
README.md
CHANGED
|
@@ -1,12 +1,48 @@
|
|
| 1 |
-
---
|
| 2 |
-
title: PhiRAG
|
| 3 |
-
|
| 4 |
-
|
| 5 |
-
|
| 6 |
-
|
| 7 |
-
|
| 8 |
-
|
| 9 |
-
|
| 10 |
-
|
| 11 |
-
|
| 12 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
---
|
| 2 |
+
title: PhiRAG
|
| 3 |
+
app_file: advanced_rag.py
|
| 4 |
+
sdk: gradio
|
| 5 |
+
sdk_version: 3.40.0
|
| 6 |
+
---
|
| 7 |
+
|
| 8 |
+
# Advanced RAG System
|
| 9 |
+
|
| 10 |
+
This repository contains the code for a Gradio web app that demoes a Retrieval-Augmented Generation (RAG) system. This app is designed to allow users to load multiple documents of their choice into a vector database, submit queries, and receive answers generated by a sophisticated RAG system that leverages the latest advancements in natural language processing and information retrieval technologies.
|
| 11 |
+
|
| 12 |
+
## Features
|
| 13 |
+
|
| 14 |
+
#### 1. Dynamic Processing
|
| 15 |
+
- Users can load multiple source documents of their choice into a vector store in real-time.
|
| 16 |
+
- Users can submit queries which are processed in real-time for enhanced retrieval and generation.
|
| 17 |
+
|
| 18 |
+
#### 2. PDF Integration
|
| 19 |
+
- The system allows for the loading of multiple PDF documents into a vector store, enabling the RAG system to retrieve information from a vast corpus.
|
| 20 |
+
|
| 21 |
+
#### 3. Advanced RAG System
|
| 22 |
+
Integrates various components, including:
|
| 23 |
+
- **UI**: Allows users to input URLs for documents and then input user queries; displays the LLM response.
|
| 24 |
+
- **Document Loader**: Loads documents from URLs.
|
| 25 |
+
- **Text Splitter**: Chunks loaded documents.
|
| 26 |
+
- **Vector Store**: Embeds text chunks and adds them to a FAISS vector store; embeds user queries.
|
| 27 |
+
- **Retrievers**: Uses an ensemble of BM25 and FAISS retrievers, along with a Cohere reranker, to retrieve relevant document chunks based on user queries.
|
| 28 |
+
- **Language Model**: Utilizes a Llama 2 large language model for generating responses based on the user query and retrieved context.
|
| 29 |
+
|
| 30 |
+
#### 4. PDF and Query Error Handling
|
| 31 |
+
- Validates PDF URLs and queries to ensure that they are not empty and that they are valid.
|
| 32 |
+
- Displays error messages for empty queries or issues with the RAG system.
|
| 33 |
+
|
| 34 |
+
#### 5. Refresh Mechanism
|
| 35 |
+
- Instructs users to refresh the page to clear / reset the RAG system.
|
| 36 |
+
|
| 37 |
+
## Installation
|
| 38 |
+
|
| 39 |
+
To run this application, you need to have Python and Gradio installed. Follow these steps:
|
| 40 |
+
|
| 41 |
+
1. Clone this repository to your local machine.
|
| 42 |
+
2. Create and activate a virtual environment of your choice (venv, conda, etc.).
|
| 43 |
+
3. Install dependencies from the requirements.txt file by running `pip install -r requirements.txt`.
|
| 44 |
+
4. Set up environment variables REPLICATE_API_TOKEN (for a Llama 2 model hosted on replicate.com) and COHERE_API_KEY (for embeddings and reranking service on cohere.com)
|
| 45 |
+
4. Start the Gradio app by running `python app.py`.
|
| 46 |
+
|
| 47 |
+
## Licence
|
| 48 |
+
MIT license
|
__pycache__/advanced_rag.cpython-311.pyc
ADDED
|
Binary file (19.4 kB). View file
|
|
|
advanced_rag.py
ADDED
|
@@ -0,0 +1,541 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
import os
|
| 2 |
+
os.environ["TOKENIZERS_PARALLELISM"] = "false"
|
| 3 |
+
import datetime
|
| 4 |
+
import functools
|
| 5 |
+
import traceback
|
| 6 |
+
from typing import List, Optional, Any, Dict
|
| 7 |
+
|
| 8 |
+
import torch
|
| 9 |
+
import transformers
|
| 10 |
+
from transformers import AutoModelForCausalLM, AutoTokenizer, pipeline
|
| 11 |
+
from langchain_community.llms import HuggingFacePipeline
|
| 12 |
+
|
| 13 |
+
# Other LangChain and community imports
|
| 14 |
+
from langchain_community.document_loaders import OnlinePDFLoader
|
| 15 |
+
from langchain.text_splitter import RecursiveCharacterTextSplitter
|
| 16 |
+
from langchain_community.vectorstores import FAISS
|
| 17 |
+
from langchain.embeddings import HuggingFaceEmbeddings
|
| 18 |
+
from langchain_community.retrievers import BM25Retriever
|
| 19 |
+
from langchain.retrievers import EnsembleRetriever
|
| 20 |
+
from langchain.prompts import ChatPromptTemplate
|
| 21 |
+
from langchain.schema import StrOutputParser, Document
|
| 22 |
+
from langchain_core.runnables import RunnableParallel, RunnablePassthrough, RunnableLambda
|
| 23 |
+
from transformers.quantizers.auto import AutoQuantizationConfig
|
| 24 |
+
import gradio as gr
|
| 25 |
+
import requests
|
| 26 |
+
|
| 27 |
+
# Add Mistral imports with fallback handling
|
| 28 |
+
try:
|
| 29 |
+
# Try importing from the latest package structure
|
| 30 |
+
from mistralai import Mistral
|
| 31 |
+
MISTRAL_AVAILABLE = True
|
| 32 |
+
debug_print = lambda msg: print(f"[{datetime.datetime.now().isoformat()}] {msg}")
|
| 33 |
+
debug_print("Loaded latest Mistral client library")
|
| 34 |
+
except ImportError:
|
| 35 |
+
MISTRAL_AVAILABLE = False
|
| 36 |
+
debug_print = lambda msg: print(f"[{datetime.datetime.now().isoformat()}] {msg}")
|
| 37 |
+
debug_print("Mistral client library not found. Install with: pip install mistralai")
|
| 38 |
+
|
| 39 |
+
# Debug print function (already defined above in the try block)
|
| 40 |
+
def debug_print(message: str):
|
| 41 |
+
print(f"[{datetime.datetime.now().isoformat()}] {message}")
|
| 42 |
+
|
| 43 |
+
def word_count(text: str) -> int:
|
| 44 |
+
return len(text.split())
|
| 45 |
+
|
| 46 |
+
# Initialize tokenizer for counting
|
| 47 |
+
def initialize_tokenizer():
|
| 48 |
+
try:
|
| 49 |
+
return AutoTokenizer.from_pretrained("gpt2")
|
| 50 |
+
except Exception as e:
|
| 51 |
+
debug_print("Failed to initialize tokenizer: " + str(e))
|
| 52 |
+
return None
|
| 53 |
+
|
| 54 |
+
global_tokenizer = initialize_tokenizer()
|
| 55 |
+
|
| 56 |
+
def count_tokens(text: str) -> int:
|
| 57 |
+
if global_tokenizer:
|
| 58 |
+
try:
|
| 59 |
+
return len(global_tokenizer.encode(text))
|
| 60 |
+
except Exception as e:
|
| 61 |
+
return len(text.split())
|
| 62 |
+
return len(text.split())
|
| 63 |
+
|
| 64 |
+
# Updated prompt template to include conversation history
|
| 65 |
+
default_prompt = """\
|
| 66 |
+
{conversation_history}
|
| 67 |
+
Use the following context to provide a detailed technical answer to the user's question.
|
| 68 |
+
Do not include an introduction like "Based on the provided documents, ...". Just answer the question.
|
| 69 |
+
If you don't know the answer, please respond with "I don't know".
|
| 70 |
+
|
| 71 |
+
Context:
|
| 72 |
+
{context}
|
| 73 |
+
|
| 74 |
+
User's question:
|
| 75 |
+
{question}
|
| 76 |
+
"""
|
| 77 |
+
|
| 78 |
+
# Helper function to load TXT files from URL with error checking
|
| 79 |
+
def load_txt_from_url(url: str) -> Document:
|
| 80 |
+
response = requests.get(url)
|
| 81 |
+
if response.status_code == 200:
|
| 82 |
+
text = response.text.strip()
|
| 83 |
+
if not text:
|
| 84 |
+
raise ValueError(f"TXT file at {url} is empty.")
|
| 85 |
+
return Document(page_content=text, metadata={"source": url})
|
| 86 |
+
else:
|
| 87 |
+
raise Exception(f"Failed to load {url} with status {response.status_code}")
|
| 88 |
+
|
| 89 |
+
|
| 90 |
+
class ElevatedRagChain:
|
| 91 |
+
def __init__(self, llm_choice: str = "Meta-Llama-3", prompt_template: str = default_prompt,
|
| 92 |
+
bm25_weight: float = 0.6, temperature: float = 0.5, top_p: float = 0.95) -> None:
|
| 93 |
+
debug_print(f"Initializing ElevatedRagChain with model: {llm_choice}")
|
| 94 |
+
|
| 95 |
+
# Check for required API keys based on model choice
|
| 96 |
+
if "mistral-api" in llm_choice.lower() and not os.environ.get("MISTRAL_API_KEY"):
|
| 97 |
+
debug_print("WARNING: Mistral API selected but MISTRAL_API_KEY environment variable not set")
|
| 98 |
+
if not MISTRAL_AVAILABLE:
|
| 99 |
+
debug_print("WARNING: Mistral API package not installed. Install with: pip install mistralai")
|
| 100 |
+
|
| 101 |
+
self.embed_func = HuggingFaceEmbeddings(
|
| 102 |
+
model_name="sentence-transformers/all-MiniLM-L6-v2",
|
| 103 |
+
model_kwargs={"device": "cpu"}
|
| 104 |
+
)
|
| 105 |
+
self.bm25_weight = bm25_weight
|
| 106 |
+
self.faiss_weight = 1.0 - bm25_weight
|
| 107 |
+
self.top_k = 5
|
| 108 |
+
self.llm_choice = llm_choice
|
| 109 |
+
self.temperature = temperature
|
| 110 |
+
self.top_p = top_p
|
| 111 |
+
self.prompt_template = prompt_template
|
| 112 |
+
self.context = ""
|
| 113 |
+
self.conversation_history: List[Dict[str, str]] = [] # List of dicts with keys "query" and "response"
|
| 114 |
+
|
| 115 |
+
def create_llm_pipeline(self):
|
| 116 |
+
if "remote" in self.llm_choice.lower():
|
| 117 |
+
debug_print("Creating remote Meta-Llama-3 pipeline via Hugging Face Inference API...")
|
| 118 |
+
from huggingface_hub import InferenceClient
|
| 119 |
+
repo_id = "meta-llama/Meta-Llama-3-8B-Instruct"
|
| 120 |
+
hf_api_token = os.environ.get("HF_API_TOKEN")
|
| 121 |
+
if not hf_api_token:
|
| 122 |
+
raise ValueError("Please set the HF_API_TOKEN environment variable to use remote inference.")
|
| 123 |
+
client = InferenceClient(token=hf_api_token)
|
| 124 |
+
|
| 125 |
+
def remote_generate(prompt: str) -> str:
|
| 126 |
+
response = client.text_generation(
|
| 127 |
+
prompt,
|
| 128 |
+
model=repo_id,
|
| 129 |
+
# max_new_tokens=512,
|
| 130 |
+
temperature=self.temperature,
|
| 131 |
+
top_p=self.top_p,
|
| 132 |
+
repetition_penalty=1.1
|
| 133 |
+
)
|
| 134 |
+
return response
|
| 135 |
+
|
| 136 |
+
from langchain.llms.base import LLM
|
| 137 |
+
class RemoteLLM(LLM):
|
| 138 |
+
@property
|
| 139 |
+
def _llm_type(self) -> str:
|
| 140 |
+
return "remote_llm"
|
| 141 |
+
def _call(self, prompt: str, stop: Optional[List[str]] = None) -> str:
|
| 142 |
+
return remote_generate(prompt)
|
| 143 |
+
@property
|
| 144 |
+
def _identifying_params(self) -> dict:
|
| 145 |
+
return {"model": repo_id}
|
| 146 |
+
debug_print("Remote Meta-Llama-3 pipeline created successfully.")
|
| 147 |
+
return RemoteLLM()
|
| 148 |
+
elif "mistral-api" in self.llm_choice.lower():
|
| 149 |
+
debug_print("Creating Mistral API pipeline...")
|
| 150 |
+
|
| 151 |
+
mistral_api_key = os.environ.get("MISTRAL_API_KEY")
|
| 152 |
+
if not mistral_api_key:
|
| 153 |
+
raise ValueError("Please set the MISTRAL_API_KEY environment variable to use Mistral API.")
|
| 154 |
+
|
| 155 |
+
if not MISTRAL_AVAILABLE:
|
| 156 |
+
raise ImportError("Mistral client library not installed. Install with: pip install mistralai")
|
| 157 |
+
|
| 158 |
+
# Initialize the Mistral client with latest API
|
| 159 |
+
mistral_client = Mistral(api_key=mistral_api_key)
|
| 160 |
+
|
| 161 |
+
# Define the model to use - updated to match current model names
|
| 162 |
+
mistral_model = "mistral-small-latest"
|
| 163 |
+
|
| 164 |
+
from langchain.llms.base import LLM
|
| 165 |
+
class MistralLLM(LLM):
|
| 166 |
+
temperature: float = 0.7
|
| 167 |
+
top_p: float = 0.95
|
| 168 |
+
|
| 169 |
+
def __init__(self, api_key: str, temperature: float = 0.7, top_p: float = 0.95):
|
| 170 |
+
super().__init__() # Important to call the parent constructor
|
| 171 |
+
self.client = Mistral(api_key=api_key)
|
| 172 |
+
self.temperature = temperature
|
| 173 |
+
self.top_p = top_p
|
| 174 |
+
|
| 175 |
+
@property
|
| 176 |
+
def _llm_type(self) -> str:
|
| 177 |
+
return "mistral_llm"
|
| 178 |
+
|
| 179 |
+
def _call(self, prompt: str, stop: Optional[List[str]] = None) -> str:
|
| 180 |
+
response = self.client.chat.complete(
|
| 181 |
+
model="mistral-small-latest", # Replace with the actual model name if different
|
| 182 |
+
messages=[{"role": "user", "content": prompt}],
|
| 183 |
+
temperature=self.temperature,
|
| 184 |
+
top_p=self.top_p,
|
| 185 |
+
max_tokens=512
|
| 186 |
+
)
|
| 187 |
+
return response.choices[0].message.content
|
| 188 |
+
|
| 189 |
+
@property
|
| 190 |
+
def _identifying_params(self) -> dict:
|
| 191 |
+
return {"model": "mistral-small-latest"}
|
| 192 |
+
|
| 193 |
+
# Initialize and return the MistralLLM instance
|
| 194 |
+
mistral_llm = MistralLLM(api_key=mistral_api_key, temperature=self.temperature, top_p=self.top_p)
|
| 195 |
+
debug_print("Mistral API pipeline created successfully.")
|
| 196 |
+
return mistral_llm
|
| 197 |
+
|
| 198 |
+
else:
|
| 199 |
+
model_id = "meta-llama/Meta-Llama-3-8B-Instruct"
|
| 200 |
+
if "deepseek" in self.llm_choice.lower():
|
| 201 |
+
model_id = "deepseek-ai/DeepSeek-R1"
|
| 202 |
+
elif "gemini" in self.llm_choice.lower():
|
| 203 |
+
model_id = "gemini/flash-1.5"
|
| 204 |
+
elif "mistralai" in self.llm_choice.lower():
|
| 205 |
+
model_id = "mistralai/Mistral-Small-24B-Instruct-2501"
|
| 206 |
+
|
| 207 |
+
pipe = pipeline(
|
| 208 |
+
"text-generation",
|
| 209 |
+
model=model_id,
|
| 210 |
+
model_kwargs={"torch_dtype": torch.bfloat16},
|
| 211 |
+
max_length=4096,
|
| 212 |
+
do_sample=True,
|
| 213 |
+
temperature=self.temperature,
|
| 214 |
+
top_p=self.top_p,
|
| 215 |
+
device=-1
|
| 216 |
+
)
|
| 217 |
+
return HuggingFacePipeline(pipeline=pipe)
|
| 218 |
+
|
| 219 |
+
def add_pdfs_to_vectore_store(self, file_links: List[str]) -> None:
|
| 220 |
+
debug_print(f"Processing files using {self.llm_choice}")
|
| 221 |
+
self.raw_data = []
|
| 222 |
+
for link in file_links:
|
| 223 |
+
if link.lower().endswith(".pdf"):
|
| 224 |
+
debug_print(f"Loading PDF: {link}")
|
| 225 |
+
# Ensure that the PDF loader returns a non-empty list.
|
| 226 |
+
loaded_docs = OnlinePDFLoader(link).load()
|
| 227 |
+
if loaded_docs:
|
| 228 |
+
self.raw_data.append(loaded_docs[0])
|
| 229 |
+
else:
|
| 230 |
+
debug_print(f"No content found in PDF: {link}")
|
| 231 |
+
elif link.lower().endswith(".txt") or link.lower().endswith(".utf-8"):
|
| 232 |
+
debug_print(f"Loading TXT: {link}")
|
| 233 |
+
try:
|
| 234 |
+
self.raw_data.append(load_txt_from_url(link))
|
| 235 |
+
except Exception as e:
|
| 236 |
+
debug_print(f"Error loading TXT file {link}: {e}")
|
| 237 |
+
else:
|
| 238 |
+
debug_print(f"File type not supported for URL: {link}")
|
| 239 |
+
|
| 240 |
+
if not self.raw_data:
|
| 241 |
+
raise ValueError("No files were successfully loaded. Please check the URLs and file formats.")
|
| 242 |
+
|
| 243 |
+
debug_print("Files loaded successfully.")
|
| 244 |
+
|
| 245 |
+
debug_print("Starting text splitting...")
|
| 246 |
+
self.text_splitter = RecursiveCharacterTextSplitter(chunk_size=1500, chunk_overlap=100)
|
| 247 |
+
self.split_data = self.text_splitter.split_documents(self.raw_data)
|
| 248 |
+
if not self.split_data:
|
| 249 |
+
raise ValueError("Text splitting resulted in no chunks. Check the file contents.")
|
| 250 |
+
debug_print(f"Text splitting completed. Number of chunks: {len(self.split_data)}")
|
| 251 |
+
|
| 252 |
+
debug_print("Creating BM25 retriever...")
|
| 253 |
+
self.bm25_retriever = BM25Retriever.from_documents(self.split_data)
|
| 254 |
+
self.bm25_retriever.k = self.top_k
|
| 255 |
+
debug_print("BM25 retriever created.")
|
| 256 |
+
|
| 257 |
+
debug_print("Embedding chunks and creating FAISS vector store...")
|
| 258 |
+
self.vector_store = FAISS.from_documents(self.split_data, self.embed_func)
|
| 259 |
+
self.faiss_retriever = self.vector_store.as_retriever(search_kwargs={"k": self.top_k})
|
| 260 |
+
debug_print("FAISS vector store created successfully.")
|
| 261 |
+
|
| 262 |
+
ensemble = EnsembleRetriever(
|
| 263 |
+
retrievers=[self.bm25_retriever, self.faiss_retriever],
|
| 264 |
+
weights=[self.bm25_weight, self.faiss_weight]
|
| 265 |
+
)
|
| 266 |
+
|
| 267 |
+
def capture_context(result):
|
| 268 |
+
# Convert each Document to a string and update the context.
|
| 269 |
+
self.context = "\n".join([str(doc) for doc in result["context"]])
|
| 270 |
+
result["context"] = self.context
|
| 271 |
+
# Add conversation_history from self.conversation_history (if any) as a string.
|
| 272 |
+
history_text = (
|
| 273 |
+
"\n".join([f"Q: {conv['query']}\nA: {conv['response']}" for conv in self.conversation_history])
|
| 274 |
+
if self.conversation_history else ""
|
| 275 |
+
)
|
| 276 |
+
result["conversation_history"] = history_text
|
| 277 |
+
return result
|
| 278 |
+
|
| 279 |
+
def extract_question(input_data):
|
| 280 |
+
# Expecting input_data to be a dict with a key "question"
|
| 281 |
+
return input_data["question"]
|
| 282 |
+
|
| 283 |
+
# Build the chain so that the ensemble (BM25 + FAISS) gets only the question string.
|
| 284 |
+
base_runnable = RunnableParallel({
|
| 285 |
+
"context": RunnableLambda(extract_question) | ensemble,
|
| 286 |
+
"question": RunnableLambda(extract_question)
|
| 287 |
+
}) | capture_context
|
| 288 |
+
|
| 289 |
+
self.rag_prompt = ChatPromptTemplate.from_template(self.prompt_template)
|
| 290 |
+
self.str_output_parser = StrOutputParser()
|
| 291 |
+
debug_print("Selecting LLM pipeline based on choice: " + self.llm_choice)
|
| 292 |
+
self.llm = self.create_llm_pipeline()
|
| 293 |
+
|
| 294 |
+
def format_response(response: str) -> str:
|
| 295 |
+
input_tokens = count_tokens(self.context + self.prompt_template)
|
| 296 |
+
output_tokens = count_tokens(response)
|
| 297 |
+
# Format the response as Markdown for better visual rendering
|
| 298 |
+
formatted = f"### Response\n\n{response}\n\n---\n"
|
| 299 |
+
formatted += f"- **Input tokens:** {input_tokens}\n"
|
| 300 |
+
formatted += f"- **Output tokens:** {output_tokens}\n"
|
| 301 |
+
formatted += f"- **Generated using:** {self.llm_choice}\n"
|
| 302 |
+
# Append conversation history summary
|
| 303 |
+
formatted += f"\n**Conversation History:** {len(self.conversation_history)} conversation(s) considered.\n"
|
| 304 |
+
return formatted
|
| 305 |
+
|
| 306 |
+
self.elevated_rag_chain = base_runnable | self.rag_prompt | self.llm | format_response
|
| 307 |
+
debug_print("Elevated RAG chain successfully built and ready to use.")
|
| 308 |
+
|
| 309 |
+
def get_current_context(self) -> str:
|
| 310 |
+
# Show a sample of the document context along with a summary of conversation history.
|
| 311 |
+
base_context = "\n".join([str(doc) for doc in self.split_data[:3]]) if hasattr(self, "split_data") and self.split_data else "No context available."
|
| 312 |
+
history_summary = "\n\n---\n**Recent Conversations (last 3):**\n"
|
| 313 |
+
recent = self.conversation_history[-3:]
|
| 314 |
+
if recent:
|
| 315 |
+
for i, conv in enumerate(recent, 1):
|
| 316 |
+
history_summary += f"**Conversation {i}:**\n- Query: {conv['query']}\n- Response: {conv['response']}\n"
|
| 317 |
+
else:
|
| 318 |
+
history_summary += "No conversation history."
|
| 319 |
+
return base_context + history_summary
|
| 320 |
+
|
| 321 |
+
# ----------------------------
|
| 322 |
+
# Gradio Interface Functions
|
| 323 |
+
# ----------------------------
|
| 324 |
+
global rag_chain
|
| 325 |
+
rag_chain = ElevatedRagChain()
|
| 326 |
+
|
| 327 |
+
def load_pdfs_updated(file_links, model_choice, prompt_template, bm25_weight, temperature, top_p):
|
| 328 |
+
debug_print("Inside load_pdfs function.")
|
| 329 |
+
if not file_links:
|
| 330 |
+
debug_print("Please enter non-empty URLs")
|
| 331 |
+
return "Please enter non-empty URLs", "Word count: N/A", "Model used: N/A", "Context: N/A"
|
| 332 |
+
try:
|
| 333 |
+
links = [link.strip() for link in file_links.split("\n") if link.strip()]
|
| 334 |
+
global rag_chain
|
| 335 |
+
rag_chain = ElevatedRagChain(
|
| 336 |
+
llm_choice=model_choice,
|
| 337 |
+
prompt_template=prompt_template,
|
| 338 |
+
bm25_weight=bm25_weight,
|
| 339 |
+
temperature=temperature,
|
| 340 |
+
top_p=top_p
|
| 341 |
+
)
|
| 342 |
+
rag_chain.add_pdfs_to_vectore_store(links)
|
| 343 |
+
context_display = rag_chain.get_current_context()
|
| 344 |
+
response_msg = f"Files loaded successfully. Using model: {model_choice}"
|
| 345 |
+
debug_print(response_msg)
|
| 346 |
+
return (
|
| 347 |
+
response_msg,
|
| 348 |
+
f"Word count: {word_count(rag_chain.context)}",
|
| 349 |
+
f"Model used: {rag_chain.llm_choice}",
|
| 350 |
+
f"Context:\n{context_display}"
|
| 351 |
+
)
|
| 352 |
+
except Exception as e:
|
| 353 |
+
error_msg = traceback.format_exc()
|
| 354 |
+
debug_print("Could not load files. Error: " + error_msg)
|
| 355 |
+
return (
|
| 356 |
+
"Error loading files: " + str(e),
|
| 357 |
+
f"Word count: {word_count('')}",
|
| 358 |
+
f"Model used: {rag_chain.llm_choice}",
|
| 359 |
+
"Context: N/A"
|
| 360 |
+
)
|
| 361 |
+
|
| 362 |
+
def submit_query_updated(query):
|
| 363 |
+
debug_print("Inside submit_query function.")
|
| 364 |
+
if not query:
|
| 365 |
+
debug_print("Please enter a non-empty query")
|
| 366 |
+
return "Please enter a non-empty query", "Word count: 0", f"Model used: {rag_chain.llm_choice}", ""
|
| 367 |
+
if hasattr(rag_chain, 'elevated_rag_chain'):
|
| 368 |
+
try:
|
| 369 |
+
# Incorporate conversation history by joining previous Q&A pairs.
|
| 370 |
+
history_text = ""
|
| 371 |
+
if rag_chain.conversation_history:
|
| 372 |
+
history_text = "\n".join([f"Q: {conv['query']}\nA: {conv['response']}" for conv in rag_chain.conversation_history])
|
| 373 |
+
|
| 374 |
+
# Build the prompt variables dictionary for the chain.
|
| 375 |
+
prompt_variables = {
|
| 376 |
+
"conversation_history": history_text,
|
| 377 |
+
"context": rag_chain.context,
|
| 378 |
+
"question": query
|
| 379 |
+
}
|
| 380 |
+
|
| 381 |
+
response = rag_chain.elevated_rag_chain.invoke(prompt_variables)
|
| 382 |
+
# Save the current conversation to history
|
| 383 |
+
rag_chain.conversation_history.append({"query": query, "response": response})
|
| 384 |
+
input_token_count = count_tokens(query)
|
| 385 |
+
output_token_count = count_tokens(response)
|
| 386 |
+
return (
|
| 387 |
+
response,
|
| 388 |
+
rag_chain.get_current_context(),
|
| 389 |
+
f"Input tokens: {input_token_count}",
|
| 390 |
+
f"Output tokens: {output_token_count}"
|
| 391 |
+
)
|
| 392 |
+
except Exception as e:
|
| 393 |
+
error_msg = traceback.format_exc()
|
| 394 |
+
debug_print("LLM error. Error: " + error_msg)
|
| 395 |
+
return (
|
| 396 |
+
"Query error: " + str(e),
|
| 397 |
+
"",
|
| 398 |
+
"Input tokens: 0",
|
| 399 |
+
"Output tokens: 0"
|
| 400 |
+
)
|
| 401 |
+
return (
|
| 402 |
+
"Please load files first.",
|
| 403 |
+
"",
|
| 404 |
+
"Input tokens: 0",
|
| 405 |
+
"Output tokens: 0"
|
| 406 |
+
)
|
| 407 |
+
|
| 408 |
+
def reset_app_updated():
|
| 409 |
+
global rag_chain
|
| 410 |
+
rag_chain = ElevatedRagChain()
|
| 411 |
+
debug_print("App reset successfully.")
|
| 412 |
+
return (
|
| 413 |
+
"App reset successfully. You can now load new files",
|
| 414 |
+
"",
|
| 415 |
+
"Model used: Not selected"
|
| 416 |
+
)
|
| 417 |
+
|
| 418 |
+
# ----------------------------
|
| 419 |
+
# Gradio Interface Setup
|
| 420 |
+
# ----------------------------
|
| 421 |
+
custom_css = """
|
| 422 |
+
button {
|
| 423 |
+
background-color: grey !important;
|
| 424 |
+
font-family: Arial !important;
|
| 425 |
+
font-weight: bold !important;
|
| 426 |
+
color: blue !important;
|
| 427 |
+
}
|
| 428 |
+
"""
|
| 429 |
+
|
| 430 |
+
with gr.Blocks(css=custom_css) as app:
|
| 431 |
+
gr.Markdown('''# PhiRAG
|
| 432 |
+
**PhiRAG** Query Your Data with Advanced RAG Techniques
|
| 433 |
+
|
| 434 |
+
**Model Selection & Parameters:** Choose from the following options:
|
| 435 |
+
- 🇺🇸 Remote Meta-Llama-3
|
| 436 |
+
- 🇪🇺 Mistral-API
|
| 437 |
+
|
| 438 |
+
**🔥 Randomness (Temperature):** Temperature adjusts how predictable or varied the output is. A low temperature makes the model choose very predictable words (which can be repetitive), while a high temperature introduces more randomness for diverse, creative text.
|
| 439 |
+
|
| 440 |
+
**🎯 Word Variety (Top‑p):** Top‑p limits the model’s word choices to those that make up a set percentage (p) of the total probability. Lower values yield focused outputs; higher values increase variety and creativity.
|
| 441 |
+
|
| 442 |
+
**✏️ Prompt Template:** Edit the prompt template if desired.
|
| 443 |
+
|
| 444 |
+
**🔗 File URLs:** Enter one or more file URLs (PDF or TXT, one per line).
|
| 445 |
+
|
| 446 |
+
**⚖️ Weight Controls:** Adjust Lexical vs Semantics (BM25 Weight).
|
| 447 |
+
|
| 448 |
+
**🔍 Query:** Enter your query below.
|
| 449 |
+
|
| 450 |
+
The response displays the model used, word count, and the current context (including conversation history).
|
| 451 |
+
"""
|
| 452 |
+
''')
|
| 453 |
+
with gr.Row():
|
| 454 |
+
with gr.Column():
|
| 455 |
+
model_dropdown = gr.Dropdown(
|
| 456 |
+
choices=[
|
| 457 |
+
"🇺🇸 Remote Meta-Llama-3",
|
| 458 |
+
"🇪🇺 Mistral-API"
|
| 459 |
+
# "DeepSeek-R1", # Option commented out
|
| 460 |
+
# "Gemini Flash 1.5", # Option commented out
|
| 461 |
+
# "Mistralai/Mistral-Small-24B-Instruct-2501" # Option commented out
|
| 462 |
+
],
|
| 463 |
+
value="🇺🇸 Remote Meta-Llama-3",
|
| 464 |
+
label="Select Model"
|
| 465 |
+
)
|
| 466 |
+
temperature_slider = gr.Slider(
|
| 467 |
+
minimum=0.1, maximum=1.0, value=0.5, step=0.1,
|
| 468 |
+
label="Randomness (Temperature)"
|
| 469 |
+
)
|
| 470 |
+
top_p_slider = gr.Slider(
|
| 471 |
+
minimum=0.1, maximum=0.99, value=0.95, step=0.05,
|
| 472 |
+
label="Word Variety (Top-p)"
|
| 473 |
+
)
|
| 474 |
+
with gr.Column():
|
| 475 |
+
pdf_input = gr.Textbox(
|
| 476 |
+
label="Enter your file URLs (one per line)",
|
| 477 |
+
placeholder="Enter one URL per line (.pdf or .txt)",
|
| 478 |
+
lines=4
|
| 479 |
+
)
|
| 480 |
+
prompt_input = gr.Textbox(
|
| 481 |
+
label="Custom Prompt Template",
|
| 482 |
+
placeholder="Enter your custom prompt template here",
|
| 483 |
+
lines=8,
|
| 484 |
+
value=default_prompt
|
| 485 |
+
)
|
| 486 |
+
with gr.Column():
|
| 487 |
+
bm25_weight_slider = gr.Slider(
|
| 488 |
+
minimum=0.0, maximum=1.0, value=0.6, step=0.1,
|
| 489 |
+
label="Lexical vs Semantics (BM25 Weight)"
|
| 490 |
+
)
|
| 491 |
+
load_button = gr.Button("Load Files")
|
| 492 |
+
|
| 493 |
+
with gr.Row():
|
| 494 |
+
with gr.Column():
|
| 495 |
+
query_input = gr.Textbox(
|
| 496 |
+
label="Enter your query here",
|
| 497 |
+
placeholder="Type your query",
|
| 498 |
+
lines=4
|
| 499 |
+
)
|
| 500 |
+
submit_button = gr.Button("Submit")
|
| 501 |
+
with gr.Column():
|
| 502 |
+
reset_button = gr.Button("Reset App")
|
| 503 |
+
|
| 504 |
+
with gr.Row():
|
| 505 |
+
response_output = gr.Textbox(
|
| 506 |
+
label="Response",
|
| 507 |
+
placeholder="Response will appear here (formatted as Markdown)",
|
| 508 |
+
lines=6
|
| 509 |
+
)
|
| 510 |
+
context_output = gr.Textbox(
|
| 511 |
+
label="Current Context",
|
| 512 |
+
placeholder="Retrieved context and conversation history will appear here",
|
| 513 |
+
lines=6
|
| 514 |
+
)
|
| 515 |
+
|
| 516 |
+
with gr.Row():
|
| 517 |
+
input_tokens = gr.Markdown("Input tokens: 0")
|
| 518 |
+
output_tokens = gr.Markdown("Output tokens: 0")
|
| 519 |
+
model_output = gr.Markdown("**Current Model**: Not selected")
|
| 520 |
+
|
| 521 |
+
load_button.click(
|
| 522 |
+
load_pdfs_updated,
|
| 523 |
+
inputs=[pdf_input, model_dropdown, prompt_input, bm25_weight_slider, temperature_slider, top_p_slider],
|
| 524 |
+
outputs=[response_output, context_output, model_output]
|
| 525 |
+
)
|
| 526 |
+
|
| 527 |
+
submit_button.click(
|
| 528 |
+
submit_query_updated,
|
| 529 |
+
inputs=[query_input],
|
| 530 |
+
outputs=[response_output, context_output, input_tokens, output_tokens]
|
| 531 |
+
)
|
| 532 |
+
|
| 533 |
+
reset_button.click(
|
| 534 |
+
reset_app_updated,
|
| 535 |
+
inputs=[],
|
| 536 |
+
outputs=[response_output, context_output, model_output]
|
| 537 |
+
)
|
| 538 |
+
|
| 539 |
+
if __name__ == "__main__":
|
| 540 |
+
debug_print("Launching Gradio interface.")
|
| 541 |
+
app.launch(share=True)
|
dropdown.py
ADDED
|
@@ -0,0 +1,11 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
import gradio as gr
|
| 2 |
+
|
| 3 |
+
def test_fn(x):
|
| 4 |
+
return x
|
| 5 |
+
|
| 6 |
+
with gr.Blocks() as demo:
|
| 7 |
+
dropdown = gr.Dropdown(choices=["Option 1", "Option 2"], value="Option 1", label="Select Option")
|
| 8 |
+
demo_button = gr.Button("Submit")
|
| 9 |
+
output = gr.Textbox(label="Output")
|
| 10 |
+
demo_button.click(test_fn, inputs=dropdown, outputs=output)
|
| 11 |
+
demo.launch()
|
requirements.txt
ADDED
|
@@ -0,0 +1,49 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
gradio<=3.x
|
| 2 |
+
langchain==0.1.6
|
| 3 |
+
langchain-community==0.0.19
|
| 4 |
+
langchain_core==0.1.22
|
| 5 |
+
langchain-openai==0.0.5
|
| 6 |
+
faiss-cpu==1.7.3
|
| 7 |
+
huggingface-hub==0.20.1
|
| 8 |
+
google-generativeai==0.3.2
|
| 9 |
+
openai==1.11.1
|
| 10 |
+
opencv-python==4.9.0.80
|
| 11 |
+
pdf2image==1.17.0
|
| 12 |
+
pdfminer-six==20221105
|
| 13 |
+
pikepdf==8.12.0
|
| 14 |
+
pypdf==4.0.1
|
| 15 |
+
rank-bm25==0.2.2
|
| 16 |
+
replicate==0.23.1
|
| 17 |
+
tiktoken==0.5.2
|
| 18 |
+
unstructured==0.12.3
|
| 19 |
+
unstructured-pytesseract==0.3.12
|
| 20 |
+
unstructured-inference==0.7.23
|
| 21 |
+
|
| 22 |
+
# generated
|
| 23 |
+
|
| 24 |
+
# Transformers for the DeepSeek model and cross-encoder reranker
|
| 25 |
+
transformers>=4.34.0
|
| 26 |
+
|
| 27 |
+
# PyTorch required by DeepSeek and many Hugging Face models
|
| 28 |
+
torch>=2.0.0
|
| 29 |
+
|
| 30 |
+
# LangChain (the main package) – adjust the version if needed
|
| 31 |
+
langchain>=0.0.200
|
| 32 |
+
|
| 33 |
+
# LangChain Community components (for document loaders, vector stores, retrievers, etc.)
|
| 34 |
+
langchain-community
|
| 35 |
+
|
| 36 |
+
# LangChain Core components (for runnables, etc.)
|
| 37 |
+
langchain-core
|
| 38 |
+
|
| 39 |
+
# SentenceTransformers for embedding via HuggingFaceEmbeddings
|
| 40 |
+
sentence-transformers
|
| 41 |
+
|
| 42 |
+
# FAISS for vector storage and similarity search (CPU version)
|
| 43 |
+
faiss-cpu
|
| 44 |
+
|
| 45 |
+
# PDF parsing (e.g., used by OnlinePDFLoader)
|
| 46 |
+
pdfminer.six
|
| 47 |
+
|
| 48 |
+
# Pin Pydantic to a version < 2 (to avoid compatibility issues with LangChain)
|
| 49 |
+
pydantic<2
|