Spaces:
Running
on
Zero
Running
on
Zero
| import torch | |
| import numpy as np | |
| from transformers import Wav2Vec2FeatureExtractor, AutoModel | |
| class FeatureExtractorMERT: | |
| def __init__(self, model_name="m-a-p/MERT-v1-95M", device = "None", sr=24000): | |
| self.model_name = model_name | |
| self.sr = sr | |
| if device == "None": | |
| use_cuda = torch.cuda.is_available() | |
| device = torch.device("cuda" if use_cuda else "cpu") | |
| else: | |
| self.device = device | |
| self.model = AutoModel.from_pretrained(self.model_name, trust_remote_code=True).to(self.device) | |
| self.processor = Wav2Vec2FeatureExtractor.from_pretrained(self.model_name, trust_remote_code=True) | |
| def extract_features_from_segment(self, segment, sample_rate, save_path): | |
| input_audio = segment.float() | |
| model_inputs = self.processor(input_audio, sampling_rate=sample_rate, return_tensors="pt") | |
| model_inputs = model_inputs.to(self.device) | |
| with torch.no_grad(): | |
| model_outputs = self.model(**model_inputs, output_hidden_states=True) | |
| # Stack and process hidden states | |
| all_layer_hidden_states = torch.stack(model_outputs.hidden_states).squeeze()[1:, :, :].unsqueeze(0) | |
| all_layer_hidden_states = all_layer_hidden_states.mean(dim=2) | |
| features = all_layer_hidden_states.cpu().detach().numpy() | |
| # Save features | |
| np.save(save_path, features) |