Spaces:
Running
on
Zero
Running
on
Zero
Update app.py
Browse files
app.py
CHANGED
|
@@ -202,23 +202,24 @@ def resample_waveform(waveform, original_sample_rate, target_sample_rate):
|
|
| 202 |
# segments.append(waveform)
|
| 203 |
|
| 204 |
# return segments
|
| 205 |
-
def split_audio(waveform, sample_rate):
|
| 206 |
-
segment_samples = segment_duration * sample_rate
|
| 207 |
-
total_samples = waveform.size(0)
|
| 208 |
|
| 209 |
-
|
| 210 |
-
|
| 211 |
-
|
| 212 |
-
waveform = torch.nn.functional.pad(waveform, (0, pad_size))
|
| 213 |
|
| 214 |
-
|
| 215 |
-
|
| 216 |
-
|
| 217 |
-
|
| 218 |
-
segment = waveform[start:end]
|
| 219 |
-
segments.append(segment)
|
| 220 |
|
| 221 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 222 |
|
| 223 |
# def split_audio(waveform, sample_rate, segment_duration=10):
|
| 224 |
# segment_samples = segment_duration * sample_rate
|
|
@@ -239,23 +240,23 @@ def split_audio(waveform, sample_rate):
|
|
| 239 |
|
| 240 |
# return segments
|
| 241 |
|
| 242 |
-
|
| 243 |
-
|
| 244 |
-
|
| 245 |
|
| 246 |
-
|
| 247 |
-
|
| 248 |
-
|
| 249 |
-
|
| 250 |
-
|
| 251 |
-
|
| 252 |
|
| 253 |
-
#
|
| 254 |
-
|
| 255 |
-
|
| 256 |
-
|
| 257 |
|
| 258 |
-
|
| 259 |
|
| 260 |
|
| 261 |
def safe_remove_dir(directory):
|
|
@@ -380,8 +381,14 @@ class Music2emo:
|
|
| 380 |
waveform = waveform.mean(dim=0).unsqueeze(0)
|
| 381 |
waveform = waveform.squeeze()
|
| 382 |
waveform, sample_rate = resample_waveform(waveform, sample_rate, resample_rate)
|
| 383 |
-
|
| 384 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 385 |
segments = split_audio(waveform, sample_rate)
|
| 386 |
for i, segment in enumerate(segments):
|
| 387 |
segment_save_path = os.path.join(mert_dir, f"segment_{i}.npy")
|
|
@@ -389,6 +396,15 @@ class Music2emo:
|
|
| 389 |
else:
|
| 390 |
segment_save_path = os.path.join(mert_dir, f"segment_0.npy")
|
| 391 |
self.feature_extractor.extract_features_from_segment(waveform, sample_rate, segment_save_path)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 392 |
|
| 393 |
embeddings = []
|
| 394 |
layers_to_extract = [5,6]
|
|
|
|
| 202 |
# segments.append(waveform)
|
| 203 |
|
| 204 |
# return segments
|
|
|
|
|
|
|
|
|
|
| 205 |
|
| 206 |
+
# def split_audio(waveform, sample_rate):
|
| 207 |
+
# segment_samples = segment_duration * sample_rate
|
| 208 |
+
# total_samples = waveform.size(0)
|
|
|
|
| 209 |
|
| 210 |
+
# # Pad if shorter than one segment
|
| 211 |
+
# if total_samples < segment_samples:
|
| 212 |
+
# pad_size = segment_samples - total_samples
|
| 213 |
+
# waveform = torch.nn.functional.pad(waveform, (0, pad_size))
|
|
|
|
|
|
|
| 214 |
|
| 215 |
+
# segments = []
|
| 216 |
+
# for start in range(0, waveform.size(0), segment_samples):
|
| 217 |
+
# end = start + segment_samples
|
| 218 |
+
# if end <= waveform.size(0):
|
| 219 |
+
# segment = waveform[start:end]
|
| 220 |
+
# segments.append(segment)
|
| 221 |
+
|
| 222 |
+
# return segments
|
| 223 |
|
| 224 |
# def split_audio(waveform, sample_rate, segment_duration=10):
|
| 225 |
# segment_samples = segment_duration * sample_rate
|
|
|
|
| 240 |
|
| 241 |
# return segments
|
| 242 |
|
| 243 |
+
def split_audio(waveform, sample_rate):
|
| 244 |
+
segment_samples = segment_duration * sample_rate
|
| 245 |
+
total_samples = waveform.size(0)
|
| 246 |
|
| 247 |
+
segments = []
|
| 248 |
+
for start in range(0, total_samples, segment_samples):
|
| 249 |
+
end = start + segment_samples
|
| 250 |
+
if end <= total_samples:
|
| 251 |
+
segment = waveform[start:end]
|
| 252 |
+
segments.append(segment)
|
| 253 |
|
| 254 |
+
# In case audio length is shorter than segment length.
|
| 255 |
+
if len(segments) == 0:
|
| 256 |
+
segment = waveform
|
| 257 |
+
segments.append(segment)
|
| 258 |
|
| 259 |
+
return segments
|
| 260 |
|
| 261 |
|
| 262 |
def safe_remove_dir(directory):
|
|
|
|
| 381 |
waveform = waveform.mean(dim=0).unsqueeze(0)
|
| 382 |
waveform = waveform.squeeze()
|
| 383 |
waveform, sample_rate = resample_waveform(waveform, sample_rate, resample_rate)
|
| 384 |
+
|
| 385 |
+
|
| 386 |
+
# 🔍 Check duration
|
| 387 |
+
duration_sec = waveform.shape[-1] / sample_rate
|
| 388 |
+
is_split = duration_sec <= 30.0
|
| 389 |
+
print(f"Audio duration: {duration_sec:.2f} seconds | is_split = {is_split}")
|
| 390 |
+
|
| 391 |
+
if is_split:
|
| 392 |
segments = split_audio(waveform, sample_rate)
|
| 393 |
for i, segment in enumerate(segments):
|
| 394 |
segment_save_path = os.path.join(mert_dir, f"segment_{i}.npy")
|
|
|
|
| 396 |
else:
|
| 397 |
segment_save_path = os.path.join(mert_dir, f"segment_0.npy")
|
| 398 |
self.feature_extractor.extract_features_from_segment(waveform, sample_rate, segment_save_path)
|
| 399 |
+
|
| 400 |
+
# if is_split:
|
| 401 |
+
# segments = split_audio(waveform, sample_rate)
|
| 402 |
+
# for i, segment in enumerate(segments):
|
| 403 |
+
# segment_save_path = os.path.join(mert_dir, f"segment_{i}.npy")
|
| 404 |
+
# self.feature_extractor.extract_features_from_segment(segment, sample_rate, segment_save_path)
|
| 405 |
+
# else:
|
| 406 |
+
# segment_save_path = os.path.join(mert_dir, f"segment_0.npy")
|
| 407 |
+
# self.feature_extractor.extract_features_from_segment(waveform, sample_rate, segment_save_path)
|
| 408 |
|
| 409 |
embeddings = []
|
| 410 |
layers_to_extract = [5,6]
|