amaye15
commited on
Commit
·
a25f677
1
Parent(s):
071dd3c
App - V2 - Improved File Formats & UI
Browse files
.DS_Store
ADDED
|
Binary file (6.15 kB). View file
|
|
|
app.py
CHANGED
|
@@ -3,24 +3,25 @@ from gradio_image_prompter import ImagePrompter
|
|
| 3 |
import torch
|
| 4 |
import numpy as np
|
| 5 |
from sam2.sam2_image_predictor import SAM2ImagePredictor
|
| 6 |
-
from PIL import Image
|
| 7 |
from uuid import uuid4
|
| 8 |
import os
|
| 9 |
from huggingface_hub import upload_folder, login
|
|
|
|
|
|
|
| 10 |
import shutil
|
|
|
|
| 11 |
|
| 12 |
MODEL = "facebook/sam2-hiera-large"
|
| 13 |
DEVICE = torch.device("cuda" if torch.cuda.is_available() else "cpu")
|
| 14 |
PREDICTOR = SAM2ImagePredictor.from_pretrained(MODEL, device=DEVICE)
|
| 15 |
|
|
|
|
| 16 |
|
| 17 |
-
login(os.getenv("TOKEN"))
|
| 18 |
-
|
| 19 |
-
GLOBALS = {}
|
| 20 |
-
|
| 21 |
|
| 22 |
IMAGE = None
|
| 23 |
MASKS = None
|
|
|
|
| 24 |
INDEX = None
|
| 25 |
|
| 26 |
|
|
@@ -44,20 +45,20 @@ def prompter(prompts):
|
|
| 44 |
print(f"Predicted Mask {i+1}:", mask.shape)
|
| 45 |
red_mask = np.zeros_like(image)
|
| 46 |
red_mask[:, :, 0] = mask.astype(np.uint8) * 255 # Apply the red channel
|
| 47 |
-
red_mask =
|
| 48 |
|
| 49 |
# Convert the original image to a PIL image
|
| 50 |
-
original_image =
|
| 51 |
|
| 52 |
# Blend the original image with the red mask
|
| 53 |
-
blended_image =
|
| 54 |
|
| 55 |
# Add the blended image to the list
|
| 56 |
overlay_images.append(blended_image)
|
| 57 |
|
| 58 |
-
global IMAGE, MASKS
|
| 59 |
-
|
| 60 |
IMAGE, MASKS = image, masks
|
|
|
|
| 61 |
|
| 62 |
return overlay_images[0], overlay_images[1], overlay_images[2], masks
|
| 63 |
|
|
@@ -80,82 +81,63 @@ def save_selected_mask(image, mask, output_dir="output"):
|
|
| 80 |
|
| 81 |
os.makedirs(output_dir, exist_ok=True)
|
| 82 |
|
| 83 |
-
# Generate a unique UUID for the folder name
|
| 84 |
folder_id = str(uuid4())
|
| 85 |
|
| 86 |
-
# Create a path for the new folder
|
| 87 |
folder_path = os.path.join(output_dir, folder_id)
|
| 88 |
|
| 89 |
-
# Ensure the folder is created
|
| 90 |
os.makedirs(folder_path, exist_ok=True)
|
| 91 |
|
| 92 |
-
|
| 93 |
-
|
| 94 |
-
|
| 95 |
-
|
| 96 |
-
|
| 97 |
-
|
| 98 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 99 |
|
| 100 |
-
|
| 101 |
-
|
| 102 |
|
| 103 |
-
# Upload the folder to the Hugging Face Hub
|
| 104 |
upload_folder(
|
| 105 |
folder_path=output_dir,
|
| 106 |
-
|
| 107 |
-
repo_id="amaye15/object-segmentation",
|
| 108 |
repo_type="dataset",
|
| 109 |
-
# ignore_patterns="**/logs/*.txt", # Adjust this if needed
|
| 110 |
)
|
| 111 |
|
| 112 |
shutil.rmtree(folder_path)
|
| 113 |
|
| 114 |
-
|
| 115 |
|
|
|
|
| 116 |
|
| 117 |
-
|
| 118 |
-
global GLOBALS
|
| 119 |
-
GLOBALS[key] = dataset_name
|
| 120 |
|
| 121 |
-
|
| 122 |
-
|
| 123 |
-
|
| 124 |
-
|
| 125 |
-
|
| 126 |
-
|
| 127 |
-
|
| 128 |
-
""
|
| 129 |
-
|
|
|
|
| 130 |
|
| 131 |
|
| 132 |
# Define the Gradio Blocks app
|
| 133 |
with gr.Blocks() as demo:
|
| 134 |
-
with gr.Tab("Setup"):
|
| 135 |
-
with gr.Row():
|
| 136 |
-
with gr.Column():
|
| 137 |
-
source = gr.Textbox(label="Source Dataset")
|
| 138 |
-
source_display = gr.Markdown()
|
| 139 |
-
iframe_display = gr.HTML()
|
| 140 |
-
|
| 141 |
-
source.change(
|
| 142 |
-
save_dataset_name,
|
| 143 |
-
inputs=(gr.State("source_dataset"), source),
|
| 144 |
-
outputs=(source_display, iframe_display),
|
| 145 |
-
)
|
| 146 |
|
| 147 |
-
|
| 148 |
-
|
| 149 |
-
destination = gr.Textbox(label="Destination Dataset")
|
| 150 |
-
destination_display = gr.Markdown()
|
| 151 |
-
|
| 152 |
-
destination.change(
|
| 153 |
-
save_dataset_name,
|
| 154 |
-
inputs=(gr.State("destination_dataset"), destination),
|
| 155 |
-
outputs=destination_display,
|
| 156 |
-
)
|
| 157 |
-
|
| 158 |
-
with gr.Tab("Object Mask - Point Prompt"):
|
| 159 |
gr.Markdown("# Image Point Collector with Multiple Separate Mask Overlays")
|
| 160 |
gr.Markdown(
|
| 161 |
"Upload an image, click on it, and get each predicted mask overlaid separately in red on individual images."
|
|
@@ -185,13 +167,14 @@ with gr.Blocks() as demo:
|
|
| 185 |
# selected_mask_output = gr.Image(show_label=False)
|
| 186 |
|
| 187 |
save_button = gr.Button("Save Selected Mask and Image")
|
| 188 |
-
|
| 189 |
|
| 190 |
# Define the action triggered by the submit button
|
| 191 |
submit_button.click(
|
| 192 |
fn=prompter,
|
| 193 |
inputs=image_input,
|
| 194 |
outputs=[image_output_1, image_output_2, image_output_3, gr.State()],
|
|
|
|
| 195 |
)
|
| 196 |
|
| 197 |
# Define the action triggered by mask selection
|
|
@@ -205,9 +188,42 @@ with gr.Blocks() as demo:
|
|
| 205 |
save_button.click(
|
| 206 |
fn=save_selected_mask,
|
| 207 |
inputs=[gr.State(), gr.State()],
|
| 208 |
-
outputs=
|
| 209 |
show_progress=True,
|
| 210 |
)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 211 |
|
| 212 |
# Launch the Gradio app
|
| 213 |
demo.launch()
|
|
|
|
| 3 |
import torch
|
| 4 |
import numpy as np
|
| 5 |
from sam2.sam2_image_predictor import SAM2ImagePredictor
|
|
|
|
| 6 |
from uuid import uuid4
|
| 7 |
import os
|
| 8 |
from huggingface_hub import upload_folder, login
|
| 9 |
+
from PIL import Image as PILImage
|
| 10 |
+
from datasets import Dataset, Features, Array2D, Image
|
| 11 |
import shutil
|
| 12 |
+
import time
|
| 13 |
|
| 14 |
MODEL = "facebook/sam2-hiera-large"
|
| 15 |
DEVICE = torch.device("cuda" if torch.cuda.is_available() else "cpu")
|
| 16 |
PREDICTOR = SAM2ImagePredictor.from_pretrained(MODEL, device=DEVICE)
|
| 17 |
|
| 18 |
+
DESTINATION_DS = "amaye15/object-segmentation"
|
| 19 |
|
| 20 |
+
# login(os.getenv("TOKEN"))
|
|
|
|
|
|
|
|
|
|
| 21 |
|
| 22 |
IMAGE = None
|
| 23 |
MASKS = None
|
| 24 |
+
MASKED_IMAGES = None
|
| 25 |
INDEX = None
|
| 26 |
|
| 27 |
|
|
|
|
| 45 |
print(f"Predicted Mask {i+1}:", mask.shape)
|
| 46 |
red_mask = np.zeros_like(image)
|
| 47 |
red_mask[:, :, 0] = mask.astype(np.uint8) * 255 # Apply the red channel
|
| 48 |
+
red_mask = PILImage.fromarray(red_mask)
|
| 49 |
|
| 50 |
# Convert the original image to a PIL image
|
| 51 |
+
original_image = PILImage.fromarray(image)
|
| 52 |
|
| 53 |
# Blend the original image with the red mask
|
| 54 |
+
blended_image = PILImage.blend(original_image, red_mask, alpha=0.5)
|
| 55 |
|
| 56 |
# Add the blended image to the list
|
| 57 |
overlay_images.append(blended_image)
|
| 58 |
|
| 59 |
+
global IMAGE, MASKS, MASKED_IMAGES
|
|
|
|
| 60 |
IMAGE, MASKS = image, masks
|
| 61 |
+
MASKED_IMAGES = [np.array(img) for img in overlay_images]
|
| 62 |
|
| 63 |
return overlay_images[0], overlay_images[1], overlay_images[2], masks
|
| 64 |
|
|
|
|
| 81 |
|
| 82 |
os.makedirs(output_dir, exist_ok=True)
|
| 83 |
|
|
|
|
| 84 |
folder_id = str(uuid4())
|
| 85 |
|
|
|
|
| 86 |
folder_path = os.path.join(output_dir, folder_id)
|
| 87 |
|
|
|
|
| 88 |
os.makedirs(folder_path, exist_ok=True)
|
| 89 |
|
| 90 |
+
data_path = os.path.join(folder_path, "data.parquet")
|
| 91 |
+
|
| 92 |
+
data = {
|
| 93 |
+
"image": IMAGE,
|
| 94 |
+
"masked_image": MASKED_IMAGES[INDEX],
|
| 95 |
+
"mask": MASKS[INDEX],
|
| 96 |
+
}
|
| 97 |
+
|
| 98 |
+
features = Features(
|
| 99 |
+
{
|
| 100 |
+
"image": Image(),
|
| 101 |
+
"masked_image": Image(),
|
| 102 |
+
"mask": Array2D(
|
| 103 |
+
dtype="int64", shape=(MASKS[INDEX].shape[0], MASKS[INDEX].shape[1])
|
| 104 |
+
),
|
| 105 |
+
}
|
| 106 |
+
)
|
| 107 |
|
| 108 |
+
ds = Dataset.from_list([data], features=features)
|
| 109 |
+
ds.to_parquet(data_path)
|
| 110 |
|
|
|
|
| 111 |
upload_folder(
|
| 112 |
folder_path=output_dir,
|
| 113 |
+
repo_id=DESTINATION_DS,
|
|
|
|
| 114 |
repo_type="dataset",
|
|
|
|
| 115 |
)
|
| 116 |
|
| 117 |
shutil.rmtree(folder_path)
|
| 118 |
|
| 119 |
+
iframe_code = "Success - Check out the 'Results' tab."
|
| 120 |
|
| 121 |
+
return iframe_code
|
| 122 |
|
| 123 |
+
# time.sleep(5)
|
|
|
|
|
|
|
| 124 |
|
| 125 |
+
# # Add a random query parameter to force reload
|
| 126 |
+
# random_param = uuid4()
|
| 127 |
+
# iframe_code = f"""
|
| 128 |
+
# <iframe
|
| 129 |
+
# src="https://huggingface.co/datasets/{DESTINATION_DS}/embed/viewer/default/train"
|
| 130 |
+
# frameborder="0"
|
| 131 |
+
# width="100%"
|
| 132 |
+
# height="560px"
|
| 133 |
+
# ></iframe>
|
| 134 |
+
# """
|
| 135 |
|
| 136 |
|
| 137 |
# Define the Gradio Blocks app
|
| 138 |
with gr.Blocks() as demo:
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 139 |
|
| 140 |
+
with gr.Tab("Object Segmentation - Point Prompt"):
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 141 |
gr.Markdown("# Image Point Collector with Multiple Separate Mask Overlays")
|
| 142 |
gr.Markdown(
|
| 143 |
"Upload an image, click on it, and get each predicted mask overlaid separately in red on individual images."
|
|
|
|
| 167 |
# selected_mask_output = gr.Image(show_label=False)
|
| 168 |
|
| 169 |
save_button = gr.Button("Save Selected Mask and Image")
|
| 170 |
+
iframe_display = gr.Markdown()
|
| 171 |
|
| 172 |
# Define the action triggered by the submit button
|
| 173 |
submit_button.click(
|
| 174 |
fn=prompter,
|
| 175 |
inputs=image_input,
|
| 176 |
outputs=[image_output_1, image_output_2, image_output_3, gr.State()],
|
| 177 |
+
show_progress=True,
|
| 178 |
)
|
| 179 |
|
| 180 |
# Define the action triggered by mask selection
|
|
|
|
| 188 |
save_button.click(
|
| 189 |
fn=save_selected_mask,
|
| 190 |
inputs=[gr.State(), gr.State()],
|
| 191 |
+
outputs=iframe_display,
|
| 192 |
show_progress=True,
|
| 193 |
)
|
| 194 |
+
with gr.Tab("Results"):
|
| 195 |
+
with gr.Row():
|
| 196 |
+
gr.HTML(
|
| 197 |
+
f"""
|
| 198 |
+
<iframe
|
| 199 |
+
src="https://huggingface.co/datasets/{DESTINATION_DS}/embed/viewer/default/train"
|
| 200 |
+
frameborder="0"
|
| 201 |
+
width="100%"
|
| 202 |
+
height="560px"
|
| 203 |
+
></iframe>
|
| 204 |
+
"""
|
| 205 |
+
)
|
| 206 |
+
# with gr.Column():
|
| 207 |
+
# source = gr.Textbox(label="Source Dataset")
|
| 208 |
+
# source_display = gr.Markdown()
|
| 209 |
+
# iframe_display = gr.HTML()
|
| 210 |
+
|
| 211 |
+
# source.change(
|
| 212 |
+
# save_dataset_name,
|
| 213 |
+
# inputs=(gr.State("source_dataset"), source),
|
| 214 |
+
# outputs=(source_display, iframe_display),
|
| 215 |
+
# )
|
| 216 |
+
|
| 217 |
+
# with gr.Column():
|
| 218 |
+
|
| 219 |
+
# destination = gr.Textbox(label="Destination Dataset")
|
| 220 |
+
# destination_display = gr.Markdown()
|
| 221 |
+
|
| 222 |
+
# destination.change(
|
| 223 |
+
# save_dataset_name,
|
| 224 |
+
# inputs=(gr.State("destination_dataset"), destination),
|
| 225 |
+
# outputs=destination_display,
|
| 226 |
+
# )
|
| 227 |
|
| 228 |
# Launch the Gradio app
|
| 229 |
demo.launch()
|
check.py
DELETED
|
@@ -1,10 +0,0 @@
|
|
| 1 |
-
import numpy as np
|
| 2 |
-
import matplotlib.pyplot as plt
|
| 3 |
-
|
| 4 |
-
# Load the image data from the .npy file
|
| 5 |
-
image = np.load("/Users/andrewmayes/Dev/image/image.npy")
|
| 6 |
-
|
| 7 |
-
# Display the image using matplotlib
|
| 8 |
-
plt.imshow(image)
|
| 9 |
-
plt.axis("off") # Turn off the axis labels
|
| 10 |
-
plt.show() # Show the image
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
requirements.txt
CHANGED
|
@@ -2,5 +2,7 @@ gradio
|
|
| 2 |
gradio-image-prompter
|
| 3 |
huggingface-hub
|
| 4 |
Pillow
|
| 5 |
-
opencv-python
|
| 6 |
git+https://github.com/facebookresearch/segment-anything-2.git
|
|
|
|
|
|
|
|
|
|
|
|
| 2 |
gradio-image-prompter
|
| 3 |
huggingface-hub
|
| 4 |
Pillow
|
|
|
|
| 5 |
git+https://github.com/facebookresearch/segment-anything-2.git
|
| 6 |
+
pyarrow
|
| 7 |
+
fastparquet
|
| 8 |
+
datasets
|