amaye15
commited on
Commit
Β·
e34d5e8
1
Parent(s):
d17cea3
App - V3 - Fully Complete
Browse files
app.py
CHANGED
|
@@ -5,11 +5,12 @@ import numpy as np
|
|
| 5 |
from sam2.sam2_image_predictor import SAM2ImagePredictor
|
| 6 |
from uuid import uuid4
|
| 7 |
import os
|
| 8 |
-
from huggingface_hub import upload_folder
|
| 9 |
from PIL import Image as PILImage
|
| 10 |
from datasets import Dataset, Features, Array2D, Image
|
| 11 |
import shutil
|
| 12 |
-
import
|
|
|
|
| 13 |
|
| 14 |
MODEL = "facebook/sam2-hiera-large"
|
| 15 |
DEVICE = torch.device("cuda" if torch.cuda.is_available() else "cpu")
|
|
@@ -17,7 +18,7 @@ PREDICTOR = SAM2ImagePredictor.from_pretrained(MODEL, device=DEVICE)
|
|
| 17 |
|
| 18 |
DESTINATION_DS = "amaye15/object-segmentation"
|
| 19 |
|
| 20 |
-
login(os.getenv("TOKEN"))
|
| 21 |
|
| 22 |
IMAGE = None
|
| 23 |
MASKS = None
|
|
@@ -25,6 +26,21 @@ MASKED_IMAGES = None
|
|
| 25 |
INDEX = None
|
| 26 |
|
| 27 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 28 |
def prompter(prompts):
|
| 29 |
|
| 30 |
image = np.array(prompts["image"]) # Convert the image to a numpy array
|
|
@@ -116,114 +132,139 @@ def save_selected_mask(image, mask, output_dir="output"):
|
|
| 116 |
|
| 117 |
shutil.rmtree(folder_path)
|
| 118 |
|
| 119 |
-
iframe_code = "Success
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 120 |
|
| 121 |
return iframe_code
|
| 122 |
|
| 123 |
-
# time.sleep(5)
|
| 124 |
|
| 125 |
-
|
| 126 |
-
|
| 127 |
-
|
| 128 |
-
|
| 129 |
-
|
| 130 |
-
|
| 131 |
-
|
| 132 |
-
|
| 133 |
-
#
|
| 134 |
-
|
| 135 |
|
| 136 |
|
| 137 |
# Define the Gradio Blocks app
|
| 138 |
with gr.Blocks() as demo:
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 139 |
|
| 140 |
-
with gr.
|
| 141 |
-
gr.
|
| 142 |
-
|
| 143 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 144 |
)
|
|
|
|
| 145 |
|
| 146 |
-
|
| 147 |
-
|
| 148 |
-
# Input: ImagePrompter
|
| 149 |
-
image_input = ImagePrompter(show_label=False)
|
| 150 |
-
submit_button = gr.Button("Submit")
|
| 151 |
-
with gr.Row():
|
| 152 |
-
with gr.Column():
|
| 153 |
-
# Outputs: Up to 3 overlay images
|
| 154 |
-
image_output_1 = gr.Image(show_label=False)
|
| 155 |
-
with gr.Column():
|
| 156 |
-
image_output_2 = gr.Image(show_label=False)
|
| 157 |
-
with gr.Column():
|
| 158 |
-
image_output_3 = gr.Image(show_label=False)
|
| 159 |
-
|
| 160 |
-
# Dropdown for selecting the correct mask
|
| 161 |
-
with gr.Row():
|
| 162 |
-
mask_selector = gr.Radio(
|
| 163 |
-
label="Select the correct mask",
|
| 164 |
-
choices=["Mask 1", "Mask 2", "Mask 3"],
|
| 165 |
-
type="index",
|
| 166 |
-
)
|
| 167 |
-
# selected_mask_output = gr.Image(show_label=False)
|
| 168 |
-
|
| 169 |
-
save_button = gr.Button("Save Selected Mask and Image")
|
| 170 |
-
iframe_display = gr.Markdown()
|
| 171 |
-
|
| 172 |
-
# Define the action triggered by the submit button
|
| 173 |
-
submit_button.click(
|
| 174 |
-
fn=prompter,
|
| 175 |
-
inputs=image_input,
|
| 176 |
-
outputs=[image_output_1, image_output_2, image_output_3, gr.State()],
|
| 177 |
-
show_progress=True,
|
| 178 |
-
)
|
| 179 |
|
| 180 |
-
|
| 181 |
-
|
| 182 |
-
|
| 183 |
-
|
| 184 |
-
|
| 185 |
-
|
| 186 |
|
| 187 |
-
|
| 188 |
-
|
| 189 |
-
|
| 190 |
-
|
| 191 |
-
|
| 192 |
-
|
| 193 |
-
|
| 194 |
-
|
| 195 |
-
|
| 196 |
-
|
| 197 |
-
|
| 198 |
-
|
| 199 |
-
|
| 200 |
-
|
| 201 |
-
|
| 202 |
-
|
| 203 |
-
|
| 204 |
-
|
| 205 |
-
|
| 206 |
-
|
| 207 |
-
|
| 208 |
-
|
| 209 |
-
|
| 210 |
-
|
| 211 |
-
|
| 212 |
-
|
| 213 |
-
# inputs=(gr.State("source_dataset"), source),
|
| 214 |
-
# outputs=(source_display, iframe_display),
|
| 215 |
-
# )
|
| 216 |
-
|
| 217 |
-
# with gr.Column():
|
| 218 |
-
|
| 219 |
-
# destination = gr.Textbox(label="Destination Dataset")
|
| 220 |
-
# destination_display = gr.Markdown()
|
| 221 |
-
|
| 222 |
-
# destination.change(
|
| 223 |
-
# save_dataset_name,
|
| 224 |
-
# inputs=(gr.State("destination_dataset"), destination),
|
| 225 |
-
# outputs=destination_display,
|
| 226 |
-
# )
|
| 227 |
|
| 228 |
# Launch the Gradio app
|
| 229 |
demo.launch()
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 5 |
from sam2.sam2_image_predictor import SAM2ImagePredictor
|
| 6 |
from uuid import uuid4
|
| 7 |
import os
|
| 8 |
+
from huggingface_hub import upload_folder
|
| 9 |
from PIL import Image as PILImage
|
| 10 |
from datasets import Dataset, Features, Array2D, Image
|
| 11 |
import shutil
|
| 12 |
+
import random
|
| 13 |
+
from datasets import load_dataset
|
| 14 |
|
| 15 |
MODEL = "facebook/sam2-hiera-large"
|
| 16 |
DEVICE = torch.device("cuda" if torch.cuda.is_available() else "cpu")
|
|
|
|
| 18 |
|
| 19 |
DESTINATION_DS = "amaye15/object-segmentation"
|
| 20 |
|
| 21 |
+
# login(os.getenv("TOKEN"))
|
| 22 |
|
| 23 |
IMAGE = None
|
| 24 |
MASKS = None
|
|
|
|
| 26 |
INDEX = None
|
| 27 |
|
| 28 |
|
| 29 |
+
ds_name = ["amaye15/product_labels"] # "amaye15/Products-10k", "amaye15/receipts"
|
| 30 |
+
choices = ["test", "train"]
|
| 31 |
+
max_len = None
|
| 32 |
+
|
| 33 |
+
ds_stream = load_dataset(random.choice(ds_name), streaming=True)
|
| 34 |
+
|
| 35 |
+
|
| 36 |
+
ds_split = ds_stream[random.choice(choices)]
|
| 37 |
+
|
| 38 |
+
ds_iter = ds_split.iter(batch_size=1)
|
| 39 |
+
|
| 40 |
+
for idx, val in enumerate(ds_iter):
|
| 41 |
+
max_len = idx
|
| 42 |
+
|
| 43 |
+
|
| 44 |
def prompter(prompts):
|
| 45 |
|
| 46 |
image = np.array(prompts["image"]) # Convert the image to a numpy array
|
|
|
|
| 132 |
|
| 133 |
shutil.rmtree(folder_path)
|
| 134 |
|
| 135 |
+
iframe_code = """## Success! ππ€β
|
| 136 |
+
|
| 137 |
+
You've successfully contributed to the dataset.
|
| 138 |
+
|
| 139 |
+
Please note that because new data has been added to the dataset, it may take a couple of minutes to render.
|
| 140 |
+
|
| 141 |
+
Check it out here:
|
| 142 |
+
|
| 143 |
+
[Object Segmentation Dataset](https://huggingface.co/datasets/amaye15/object-segmentation)
|
| 144 |
+
"""
|
| 145 |
|
| 146 |
return iframe_code
|
| 147 |
|
|
|
|
| 148 |
|
| 149 |
+
def get_random_image():
|
| 150 |
+
"""Get a random image from the dataset."""
|
| 151 |
+
global max_len
|
| 152 |
+
random_idx = random.choice(range(max_len))
|
| 153 |
+
image_data = list(ds_split.skip(random_idx).take(1))[0]["pixel_values"]
|
| 154 |
+
formatted_image = {
|
| 155 |
+
"image": np.array(image_data),
|
| 156 |
+
"points": [],
|
| 157 |
+
} # Create the correct format
|
| 158 |
+
return formatted_image
|
| 159 |
|
| 160 |
|
| 161 |
# Define the Gradio Blocks app
|
| 162 |
with gr.Blocks() as demo:
|
| 163 |
+
gr.Markdown("# Object Segmentation- Image Point Collector and Mask Overlay Tool")
|
| 164 |
+
gr.Markdown(
|
| 165 |
+
"""
|
| 166 |
+
This application utilizes **Segment Anything V2 (SAM2)** to allow you to upload an image or select a random image from a dataset and interactively generate segmentation masks based on multiple points you select on the image.
|
| 167 |
+
|
| 168 |
+
### How It Works:
|
| 169 |
+
1. **Upload or Select an Image**: You can either upload your own image or use a random image from the dataset.
|
| 170 |
+
2. **Point Selection**: Click on the image to indicate points of interest. You can add multiple points, and these will be used collectively to generate segmentation masks using SAM2.
|
| 171 |
+
3. **Mask Generation**: The app will generate up to three different segmentation masks for the selected points, each displayed separately with a red overlay.
|
| 172 |
+
4. **Mask Selection**: Carefully review the generated masks and select the one that best fits your needs. **It's important to choose the correct mask, as your selection will be saved and used for further processing.**
|
| 173 |
+
5. **Save and Contribute**: Save the selected mask along with the image to a dataset, contributing to a shared dataset on Hugging Face.
|
| 174 |
+
|
| 175 |
+
**Disclaimer**: All images and masks you work with will be collected and stored in a public dataset. Please ensure that you are comfortable with your selections and the data you provide before saving.
|
| 176 |
+
|
| 177 |
+
This tool is particularly useful for creating precise object segmentation masks for computer vision tasks, such as training models or generating labeled datasets.
|
| 178 |
+
"""
|
| 179 |
+
)
|
| 180 |
|
| 181 |
+
with gr.Row():
|
| 182 |
+
with gr.Column():
|
| 183 |
+
image_input = gr.State()
|
| 184 |
+
# Input: ImagePrompter for uploaded image
|
| 185 |
+
upload_image_input = ImagePrompter(show_label=False)
|
| 186 |
+
|
| 187 |
+
random_image_button = gr.Button("Use Random Image")
|
| 188 |
+
|
| 189 |
+
submit_button = gr.Button("Submit")
|
| 190 |
+
|
| 191 |
+
with gr.Row():
|
| 192 |
+
with gr.Column():
|
| 193 |
+
# Outputs: Up to 3 overlay images
|
| 194 |
+
image_output_1 = gr.Image(show_label=False)
|
| 195 |
+
with gr.Column():
|
| 196 |
+
image_output_2 = gr.Image(show_label=False)
|
| 197 |
+
with gr.Column():
|
| 198 |
+
image_output_3 = gr.Image(show_label=False)
|
| 199 |
+
|
| 200 |
+
# Dropdown for selecting the correct mask
|
| 201 |
+
with gr.Row():
|
| 202 |
+
mask_selector = gr.Radio(
|
| 203 |
+
label="Select the correct mask",
|
| 204 |
+
choices=["Mask 1", "Mask 2", "Mask 3"],
|
| 205 |
+
type="index",
|
| 206 |
)
|
| 207 |
+
# selected_mask_output = gr.Image(show_label=False)
|
| 208 |
|
| 209 |
+
save_button = gr.Button("Save Selected Mask and Image")
|
| 210 |
+
iframe_display = gr.Markdown()
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 211 |
|
| 212 |
+
# Logic for the random image button
|
| 213 |
+
random_image_button.click(
|
| 214 |
+
fn=get_random_image,
|
| 215 |
+
inputs=None,
|
| 216 |
+
outputs=upload_image_input, # Pass the formatted random image to ImagePrompter
|
| 217 |
+
)
|
| 218 |
|
| 219 |
+
# Logic to use uploaded image
|
| 220 |
+
upload_image_input.change(
|
| 221 |
+
fn=lambda img: img, inputs=upload_image_input, outputs=image_input
|
| 222 |
+
)
|
| 223 |
+
# Define the action triggered by the submit button
|
| 224 |
+
submit_button.click(
|
| 225 |
+
fn=prompter,
|
| 226 |
+
inputs=upload_image_input, # The final image input (whether uploaded or random)
|
| 227 |
+
outputs=[image_output_1, image_output_2, image_output_3, gr.State()],
|
| 228 |
+
show_progress=True,
|
| 229 |
+
)
|
| 230 |
+
|
| 231 |
+
# Define the action triggered by mask selection
|
| 232 |
+
mask_selector.change(
|
| 233 |
+
fn=select_mask,
|
| 234 |
+
inputs=[mask_selector, image_output_1, image_output_2, image_output_3],
|
| 235 |
+
outputs=gr.State(),
|
| 236 |
+
)
|
| 237 |
+
|
| 238 |
+
# Define the action triggered by the save button
|
| 239 |
+
save_button.click(
|
| 240 |
+
fn=save_selected_mask,
|
| 241 |
+
inputs=[gr.State(), gr.State()],
|
| 242 |
+
outputs=iframe_display,
|
| 243 |
+
show_progress=True,
|
| 244 |
+
)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 245 |
|
| 246 |
# Launch the Gradio app
|
| 247 |
demo.launch()
|
| 248 |
+
|
| 249 |
+
|
| 250 |
+
# with gr.Column():
|
| 251 |
+
# source = gr.Textbox(label="Source Dataset")
|
| 252 |
+
# source_display = gr.Markdown()
|
| 253 |
+
# iframe_display = gr.HTML()
|
| 254 |
+
|
| 255 |
+
# source.change(
|
| 256 |
+
# save_dataset_name,
|
| 257 |
+
# inputs=(gr.State("source_dataset"), source),
|
| 258 |
+
# outputs=(source_display, iframe_display),
|
| 259 |
+
# )
|
| 260 |
+
|
| 261 |
+
# with gr.Column():
|
| 262 |
+
|
| 263 |
+
# destination = gr.Textbox(label="Destination Dataset")
|
| 264 |
+
# destination_display = gr.Markdown()
|
| 265 |
+
|
| 266 |
+
# destination.change(
|
| 267 |
+
# save_dataset_name,
|
| 268 |
+
# inputs=(gr.State("destination_dataset"), destination),
|
| 269 |
+
# outputs=destination_display,
|
| 270 |
+
# )
|