Spaces:
Running
Running
Change default num_steps
Browse files
app.py
CHANGED
|
@@ -9,7 +9,7 @@ import gradio as gr
|
|
| 9 |
import numpy as np
|
| 10 |
import PIL.Image
|
| 11 |
import torch
|
| 12 |
-
from diffusers import DiffusionPipeline
|
| 13 |
|
| 14 |
DESCRIPTION = "# SD-XL"
|
| 15 |
if not torch.cuda.is_available():
|
|
@@ -24,8 +24,10 @@ ENABLE_REFINER = os.getenv("ENABLE_REFINER", "1") == "1"
|
|
| 24 |
|
| 25 |
device = torch.device("cuda:0" if torch.cuda.is_available() else "cpu")
|
| 26 |
if torch.cuda.is_available():
|
|
|
|
| 27 |
pipe = DiffusionPipeline.from_pretrained(
|
| 28 |
"stabilityai/stable-diffusion-xl-base-1.0",
|
|
|
|
| 29 |
torch_dtype=torch.float16,
|
| 30 |
use_safetensors=True,
|
| 31 |
variant="fp16",
|
|
@@ -33,6 +35,7 @@ if torch.cuda.is_available():
|
|
| 33 |
if ENABLE_REFINER:
|
| 34 |
refiner = DiffusionPipeline.from_pretrained(
|
| 35 |
"stabilityai/stable-diffusion-xl-refiner-1.0",
|
|
|
|
| 36 |
torch_dtype=torch.float16,
|
| 37 |
use_safetensors=True,
|
| 38 |
variant="fp16",
|
|
@@ -75,8 +78,8 @@ def generate(
|
|
| 75 |
height: int = 1024,
|
| 76 |
guidance_scale_base: float = 5.0,
|
| 77 |
guidance_scale_refiner: float = 5.0,
|
| 78 |
-
num_inference_steps_base: int =
|
| 79 |
-
num_inference_steps_refiner: int =
|
| 80 |
apply_refiner: bool = False,
|
| 81 |
) -> PIL.Image.Image:
|
| 82 |
generator = torch.Generator().manual_seed(seed)
|
|
@@ -211,7 +214,7 @@ with gr.Blocks(css="style.css") as demo:
|
|
| 211 |
minimum=10,
|
| 212 |
maximum=100,
|
| 213 |
step=1,
|
| 214 |
-
value=
|
| 215 |
)
|
| 216 |
with gr.Row(visible=False) as refiner_params:
|
| 217 |
guidance_scale_refiner = gr.Slider(
|
|
@@ -226,7 +229,7 @@ with gr.Blocks(css="style.css") as demo:
|
|
| 226 |
minimum=10,
|
| 227 |
maximum=100,
|
| 228 |
step=1,
|
| 229 |
-
value=
|
| 230 |
)
|
| 231 |
|
| 232 |
gr.Examples(
|
|
|
|
| 9 |
import numpy as np
|
| 10 |
import PIL.Image
|
| 11 |
import torch
|
| 12 |
+
from diffusers import AutoencoderKL, DiffusionPipeline
|
| 13 |
|
| 14 |
DESCRIPTION = "# SD-XL"
|
| 15 |
if not torch.cuda.is_available():
|
|
|
|
| 24 |
|
| 25 |
device = torch.device("cuda:0" if torch.cuda.is_available() else "cpu")
|
| 26 |
if torch.cuda.is_available():
|
| 27 |
+
vae = AutoencoderKL.from_pretrained("madebyollin/sdxl-vae-fp16-fix", torch_dtype=torch.float16)
|
| 28 |
pipe = DiffusionPipeline.from_pretrained(
|
| 29 |
"stabilityai/stable-diffusion-xl-base-1.0",
|
| 30 |
+
vae=vae,
|
| 31 |
torch_dtype=torch.float16,
|
| 32 |
use_safetensors=True,
|
| 33 |
variant="fp16",
|
|
|
|
| 35 |
if ENABLE_REFINER:
|
| 36 |
refiner = DiffusionPipeline.from_pretrained(
|
| 37 |
"stabilityai/stable-diffusion-xl-refiner-1.0",
|
| 38 |
+
vae=vae,
|
| 39 |
torch_dtype=torch.float16,
|
| 40 |
use_safetensors=True,
|
| 41 |
variant="fp16",
|
|
|
|
| 78 |
height: int = 1024,
|
| 79 |
guidance_scale_base: float = 5.0,
|
| 80 |
guidance_scale_refiner: float = 5.0,
|
| 81 |
+
num_inference_steps_base: int = 25,
|
| 82 |
+
num_inference_steps_refiner: int = 25,
|
| 83 |
apply_refiner: bool = False,
|
| 84 |
) -> PIL.Image.Image:
|
| 85 |
generator = torch.Generator().manual_seed(seed)
|
|
|
|
| 214 |
minimum=10,
|
| 215 |
maximum=100,
|
| 216 |
step=1,
|
| 217 |
+
value=25,
|
| 218 |
)
|
| 219 |
with gr.Row(visible=False) as refiner_params:
|
| 220 |
guidance_scale_refiner = gr.Slider(
|
|
|
|
| 229 |
minimum=10,
|
| 230 |
maximum=100,
|
| 231 |
step=1,
|
| 232 |
+
value=25,
|
| 233 |
)
|
| 234 |
|
| 235 |
gr.Examples(
|