Update app.py
Browse files
app.py
CHANGED
|
@@ -1,3 +1,4 @@
|
|
|
|
|
| 1 |
import streamlit as st
|
| 2 |
import torch
|
| 3 |
import os
|
|
@@ -8,7 +9,10 @@ from langchain_community.document_loaders import PyPDFLoader, TextLoader
|
|
| 8 |
from langchain_text_splitters import RecursiveCharacterTextSplitter
|
| 9 |
from langchain_community.embeddings import HuggingFaceEmbeddings
|
| 10 |
from langchain.vectorstores import FAISS
|
|
|
|
|
|
|
| 11 |
from langchain.schema import Document
|
|
|
|
| 12 |
|
| 13 |
# --- HF Token ---
|
| 14 |
HF_TOKEN = st.secrets["HF_TOKEN"]
|
|
@@ -21,111 +25,83 @@ st.title("π DigiTs the Twin")
|
|
| 21 |
with st.sidebar:
|
| 22 |
st.header("π Upload Knowledge Files")
|
| 23 |
uploaded_files = st.file_uploader("Upload PDFs or .txt files", accept_multiple_files=True, type=["pdf", "txt"])
|
| 24 |
-
|
| 25 |
-
st.success(f"{len(uploaded_files)} file(s) uploaded")
|
| 26 |
|
| 27 |
# --- Model Loading ---
|
| 28 |
@st.cache_resource
|
| 29 |
def load_model():
|
| 30 |
-
|
| 31 |
-
|
| 32 |
-
|
| 33 |
-
|
| 34 |
-
|
| 35 |
-
|
| 36 |
-
|
| 37 |
-
|
| 38 |
-
|
| 39 |
-
|
| 40 |
-
|
| 41 |
-
|
| 42 |
-
|
| 43 |
-
|
| 44 |
-
|
| 45 |
-
|
| 46 |
-
|
| 47 |
-
|
| 48 |
-
|
| 49 |
-
)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 50 |
|
|
|
|
|
|
|
| 51 |
|
| 52 |
-
|
| 53 |
-
|
| 54 |
-
for msg in messages:
|
| 55 |
-
role = msg["role"]
|
| 56 |
-
prompt += f"<|im_start|>{role}\n{msg['content']}<|im_end|>\n"
|
| 57 |
-
prompt += "<|im_start|>assistant\n"
|
| 58 |
-
return prompt
|
| 59 |
|
|
|
|
|
|
|
|
|
|
|
|
|
| 60 |
|
| 61 |
-
|
| 62 |
-
|
| 63 |
-
|
| 64 |
-
|
| 65 |
-
|
| 66 |
-
file_path = f"/tmp/{f.name}"
|
| 67 |
-
with open(file_path, "wb") as out_file:
|
| 68 |
-
out_file.write(f.read())
|
| 69 |
-
|
| 70 |
-
loader = PyPDFLoader(file_path) if f.name.endswith(".pdf") else TextLoader(file_path)
|
| 71 |
-
raw_docs.extend(loader.load())
|
| 72 |
-
|
| 73 |
-
splitter = RecursiveCharacterTextSplitter(chunk_size=512, chunk_overlap=64)
|
| 74 |
-
chunks = splitter.split_documents(raw_docs)
|
| 75 |
-
embeddings = HuggingFaceEmbeddings(model_name="sentence-transformers/all-MiniLM-L6-v2")
|
| 76 |
-
db = FAISS.from_documents(chunks, embedding=embeddings)
|
| 77 |
-
return db
|
| 78 |
-
|
| 79 |
-
retriever = embed_uploaded_files(uploaded_files) if uploaded_files else None
|
| 80 |
|
| 81 |
-
# --- Streaming Response ---
|
| 82 |
-
def generate_response(prompt_text):
|
| 83 |
streamer = TextIteratorStreamer(tokenizer, skip_prompt=True, skip_special_tokens=True)
|
| 84 |
-
inputs = tokenizer(
|
| 85 |
-
|
| 86 |
-
|
| 87 |
-
|
| 88 |
-
"max_new_tokens": 1024,
|
| 89 |
-
"temperature": 0.7,
|
| 90 |
-
"top_p": 0.9,
|
| 91 |
-
"repetition_penalty": 1.1,
|
| 92 |
-
"do_sample": True,
|
| 93 |
-
"streamer": streamer
|
| 94 |
-
})
|
| 95 |
thread.start()
|
| 96 |
-
|
| 97 |
-
|
| 98 |
-
|
| 99 |
-
|
| 100 |
-
|
| 101 |
-
|
| 102 |
-
|
| 103 |
-
|
| 104 |
-
|
| 105 |
-
|
| 106 |
-
|
| 107 |
-
|
| 108 |
-
st.
|
| 109 |
-
|
| 110 |
-
|
| 111 |
-
if
|
| 112 |
-
|
| 113 |
-
|
| 114 |
-
|
| 115 |
-
|
| 116 |
-
|
| 117 |
-
|
| 118 |
-
|
| 119 |
-
|
| 120 |
-
full_prompt = build_prompt(st.session_state.messages, context=context)
|
| 121 |
-
|
| 122 |
-
with st.chat_message("assistant", avatar=BOT_AVATAR):
|
| 123 |
-
start_time = time.time()
|
| 124 |
-
streamer = generate_response(full_prompt)
|
| 125 |
-
container = st.empty()
|
| 126 |
-
answer = ""
|
| 127 |
-
for chunk in streamer:
|
| 128 |
-
answer += chunk
|
| 129 |
-
container.markdown(answer + "β", unsafe_allow_html=True)
|
| 130 |
-
container.markdown(answer)
|
| 131 |
-
st.session_state.messages.append({"role": "assistant", "content": answer})
|
|
|
|
| 1 |
+
|
| 2 |
import streamlit as st
|
| 3 |
import torch
|
| 4 |
import os
|
|
|
|
| 9 |
from langchain_text_splitters import RecursiveCharacterTextSplitter
|
| 10 |
from langchain_community.embeddings import HuggingFaceEmbeddings
|
| 11 |
from langchain.vectorstores import FAISS
|
| 12 |
+
from langchain.retrievers import BM25Retriever
|
| 13 |
+
from langchain.retrievers import EnsembleRetriever
|
| 14 |
from langchain.schema import Document
|
| 15 |
+
from langchain.docstore.document import Document as LangchainDocument
|
| 16 |
|
| 17 |
# --- HF Token ---
|
| 18 |
HF_TOKEN = st.secrets["HF_TOKEN"]
|
|
|
|
| 25 |
with st.sidebar:
|
| 26 |
st.header("π Upload Knowledge Files")
|
| 27 |
uploaded_files = st.file_uploader("Upload PDFs or .txt files", accept_multiple_files=True, type=["pdf", "txt"])
|
| 28 |
+
hybrid_toggle = st.checkbox("π Enable Hybrid Search", value=True)
|
|
|
|
| 29 |
|
| 30 |
# --- Model Loading ---
|
| 31 |
@st.cache_resource
|
| 32 |
def load_model():
|
| 33 |
+
model_id = "tiiuae/falcon-7b-instruct"
|
| 34 |
+
tokenizer = AutoTokenizer.from_pretrained(model_id, token=HF_TOKEN)
|
| 35 |
+
model = AutoModelForCausalLM.from_pretrained(model_id, torch_dtype=torch.float16, device_map="auto", token=HF_TOKEN)
|
| 36 |
+
return tokenizer, model
|
| 37 |
+
|
| 38 |
+
tokenizer, model = load_model()
|
| 39 |
+
|
| 40 |
+
# --- Document Processing ---
|
| 41 |
+
def process_documents(files):
|
| 42 |
+
documents = []
|
| 43 |
+
for file in files:
|
| 44 |
+
if file.name.endswith(".pdf"):
|
| 45 |
+
loader = PyPDFLoader(file)
|
| 46 |
+
else:
|
| 47 |
+
loader = TextLoader(file)
|
| 48 |
+
docs = loader.load()
|
| 49 |
+
documents.extend(docs)
|
| 50 |
+
return documents
|
| 51 |
+
|
| 52 |
+
def chunk_documents(documents):
|
| 53 |
+
splitter = RecursiveCharacterTextSplitter(chunk_size=500, chunk_overlap=50)
|
| 54 |
+
return splitter.split_documents(documents)
|
| 55 |
+
|
| 56 |
+
# --- Embedding and Retrieval ---
|
| 57 |
+
def build_retrievers(chunks):
|
| 58 |
+
embeddings = HuggingFaceEmbeddings(model_name="sentence-transformers/all-MiniLM-L6-v2")
|
| 59 |
+
faiss_vectorstore = FAISS.from_documents(chunks, embeddings)
|
| 60 |
+
faiss_retriever = faiss_vectorstore.as_retriever(search_type="similarity", search_kwargs={"k": 5})
|
| 61 |
|
| 62 |
+
bm25_retriever = BM25Retriever.from_documents([LangchainDocument(page_content=d.page_content) for d in chunks])
|
| 63 |
+
bm25_retriever.k = 5
|
| 64 |
|
| 65 |
+
ensemble = EnsembleRetriever(retrievers=[faiss_retriever, bm25_retriever], weights=[0.5, 0.5])
|
| 66 |
+
return faiss_retriever, ensemble
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 67 |
|
| 68 |
+
# --- Inference ---
|
| 69 |
+
def generate_answer(query, retriever):
|
| 70 |
+
docs = retriever.get_relevant_documents(query)
|
| 71 |
+
context = "\n".join([doc.page_content for doc in docs])
|
| 72 |
|
| 73 |
+
system_prompt = (
|
| 74 |
+
"You are DigiTwin, an expert advisor in asset integrity, reliability, inspection, and maintenance "
|
| 75 |
+
"of topside piping, structural, mechanical systems, floating units, pressure vessels (VII), and pressure safety devices (PSD's). "
|
| 76 |
+
"Use the context below to answer professionally.\n\nContext:\n" + context + "\n\nQuery: " + query + "\nAnswer:"
|
| 77 |
+
)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 78 |
|
|
|
|
|
|
|
| 79 |
streamer = TextIteratorStreamer(tokenizer, skip_prompt=True, skip_special_tokens=True)
|
| 80 |
+
inputs = tokenizer(system_prompt, return_tensors="pt").to(model.device)
|
| 81 |
+
generation_kwargs = dict(**inputs, streamer=streamer, max_new_tokens=300)
|
| 82 |
+
|
| 83 |
+
thread = Thread(target=model.generate, kwargs=generation_kwargs)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 84 |
thread.start()
|
| 85 |
+
|
| 86 |
+
answer = ""
|
| 87 |
+
for token in streamer:
|
| 88 |
+
answer += token
|
| 89 |
+
yield answer
|
| 90 |
+
|
| 91 |
+
# --- Main App ---
|
| 92 |
+
if uploaded_files:
|
| 93 |
+
with st.spinner("Processing documents..."):
|
| 94 |
+
docs = process_documents(uploaded_files)
|
| 95 |
+
chunks = chunk_documents(docs)
|
| 96 |
+
faiss_retriever, hybrid_retriever = build_retrievers(chunks)
|
| 97 |
+
st.success("Documents processed successfully.")
|
| 98 |
+
|
| 99 |
+
query = st.text_input("π Ask a question based on the uploaded documents")
|
| 100 |
+
if query:
|
| 101 |
+
st.subheader("π€ Answer")
|
| 102 |
+
retriever = hybrid_retriever if hybrid_toggle else faiss_retriever
|
| 103 |
+
response_placeholder = st.empty()
|
| 104 |
+
full_response = ""
|
| 105 |
+
for partial_response in generate_answer(query, retriever):
|
| 106 |
+
full_response = partial_response
|
| 107 |
+
response_placeholder.markdown(full_response)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|