Update app.py
Browse files
app.py
CHANGED
|
@@ -1,7 +1,6 @@
|
|
| 1 |
import streamlit as st
|
| 2 |
import torch
|
| 3 |
import os
|
| 4 |
-
import tempfile
|
| 5 |
import time
|
| 6 |
from threading import Thread
|
| 7 |
from transformers import AutoTokenizer, AutoModelForCausalLM, TextIteratorStreamer
|
|
@@ -9,13 +8,7 @@ from langchain_community.document_loaders import PyPDFLoader, TextLoader
|
|
| 9 |
from langchain_text_splitters import RecursiveCharacterTextSplitter
|
| 10 |
from langchain_community.embeddings import HuggingFaceEmbeddings
|
| 11 |
from langchain.vectorstores import FAISS
|
| 12 |
-
from langchain.retrievers import BM25Retriever, EnsembleRetriever
|
| 13 |
from langchain.schema import Document
|
| 14 |
-
from langchain.docstore.document import Document as LangchainDocument
|
| 15 |
-
|
| 16 |
-
# --- Avatars ---
|
| 17 |
-
USER_AVATAR = "π€"
|
| 18 |
-
BOT_AVATAR = "π€"
|
| 19 |
|
| 20 |
# --- HF Token ---
|
| 21 |
HF_TOKEN = st.secrets["HF_TOKEN"]
|
|
@@ -24,86 +17,94 @@ HF_TOKEN = st.secrets["HF_TOKEN"]
|
|
| 24 |
st.set_page_config(page_title="DigiTwin RAG", page_icon="π", layout="centered")
|
| 25 |
st.title("π DigiTs the Twin")
|
| 26 |
|
| 27 |
-
# --- Sidebar ---
|
| 28 |
with st.sidebar:
|
| 29 |
st.header("π Upload Knowledge Files")
|
| 30 |
uploaded_files = st.file_uploader("Upload PDFs or .txt files", accept_multiple_files=True, type=["pdf", "txt"])
|
| 31 |
-
|
| 32 |
-
|
| 33 |
-
|
| 34 |
-
# --- Session State ---
|
| 35 |
-
if "messages" not in st.session_state or clear_chat:
|
| 36 |
-
st.session_state.messages = []
|
| 37 |
|
| 38 |
-
# ---
|
| 39 |
@st.cache_resource
|
| 40 |
def load_model():
|
| 41 |
-
|
| 42 |
-
|
| 43 |
-
|
| 44 |
-
|
| 45 |
-
|
| 46 |
-
|
| 47 |
-
|
| 48 |
-
# --- Load & Chunk Documents ---
|
| 49 |
-
def process_documents(files):
|
| 50 |
-
documents = []
|
| 51 |
-
for file in files:
|
| 52 |
-
suffix = ".pdf" if file.name.endswith(".pdf") else ".txt"
|
| 53 |
-
with tempfile.NamedTemporaryFile(delete=False, suffix=suffix) as tmp_file:
|
| 54 |
-
tmp_file.write(file.read())
|
| 55 |
-
tmp_file_path = tmp_file.name
|
| 56 |
-
loader = PyPDFLoader(tmp_file_path) if suffix == ".pdf" else TextLoader(tmp_file_path)
|
| 57 |
-
documents.extend(loader.load())
|
| 58 |
-
return documents
|
| 59 |
-
|
| 60 |
-
def chunk_documents(documents):
|
| 61 |
-
splitter = RecursiveCharacterTextSplitter(chunk_size=500, chunk_overlap=50)
|
| 62 |
-
return splitter.split_documents(documents)
|
| 63 |
-
|
| 64 |
-
def build_retrievers(chunks):
|
| 65 |
-
embeddings = HuggingFaceEmbeddings(model_name="sentence-transformers/all-MiniLM-L6-v2")
|
| 66 |
-
faiss_vectorstore = FAISS.from_documents(chunks, embeddings)
|
| 67 |
-
faiss_retriever = faiss_vectorstore.as_retriever(search_type="similarity", search_kwargs={"k": 5})
|
| 68 |
-
bm25_retriever = BM25Retriever.from_documents([LangchainDocument(page_content=d.page_content) for d in chunks])
|
| 69 |
-
bm25_retriever.k = 5
|
| 70 |
-
return faiss_retriever, EnsembleRetriever(retrievers=[faiss_retriever, bm25_retriever], weights=[0.5, 0.5])
|
| 71 |
-
|
| 72 |
-
# --- Prompt Builder ---
|
| 73 |
-
def build_prompt(history, context=""):
|
| 74 |
-
conversation = ""
|
| 75 |
-
for turn in history:
|
| 76 |
-
role = "User" if turn["role"] == "user" else "Assistant"
|
| 77 |
-
conversation += f"{role}: {turn['content']}\n"
|
| 78 |
-
return (
|
| 79 |
-
"You are DigiTwin, an expert advisor in asset integrity, reliability, inspection, and maintenance "
|
| 80 |
-
"of topside piping, structural, mechanical systems, floating units, pressure vessels (VII), and pressure safety devices (PSD's).\n\n"
|
| 81 |
-
f"Context:\n{context}\n\n"
|
| 82 |
-
f"{conversation}Assistant:"
|
| 83 |
)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 84 |
|
| 85 |
-
|
| 86 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 87 |
streamer = TextIteratorStreamer(tokenizer, skip_prompt=True, skip_special_tokens=True)
|
| 88 |
-
inputs = tokenizer(
|
| 89 |
-
|
| 90 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 91 |
thread.start()
|
| 92 |
-
|
| 93 |
-
|
| 94 |
-
|
| 95 |
-
|
| 96 |
-
|
| 97 |
-
|
| 98 |
-
|
| 99 |
-
|
| 100 |
-
chunks = chunk_documents(docs)
|
| 101 |
-
faiss, hybrid = build_retrievers(chunks)
|
| 102 |
-
retriever = hybrid if hybrid_toggle else faiss
|
| 103 |
-
st.success("Documents processed. Ask away!")
|
| 104 |
|
| 105 |
for msg in st.session_state.messages:
|
| 106 |
-
|
|
|
|
| 107 |
st.markdown(msg["content"])
|
| 108 |
|
| 109 |
# --- Chat UI ---
|
|
@@ -113,12 +114,13 @@ if prompt := st.chat_input("Ask something based on uploaded documents..."):
|
|
| 113 |
|
| 114 |
context = ""
|
| 115 |
if retriever:
|
| 116 |
-
docs = retriever.
|
| 117 |
context = "\n\n".join([d.page_content for d in docs])
|
| 118 |
|
| 119 |
full_prompt = build_prompt(st.session_state.messages, context=context)
|
| 120 |
|
| 121 |
with st.chat_message("assistant", avatar=BOT_AVATAR):
|
|
|
|
| 122 |
streamer = generate_response(full_prompt)
|
| 123 |
container = st.empty()
|
| 124 |
answer = ""
|
|
@@ -126,4 +128,4 @@ if prompt := st.chat_input("Ask something based on uploaded documents..."):
|
|
| 126 |
answer += chunk
|
| 127 |
container.markdown(answer + "β", unsafe_allow_html=True)
|
| 128 |
container.markdown(answer)
|
| 129 |
-
st.session_state.messages.append({"role": "assistant", "content": answer})
|
|
|
|
| 1 |
import streamlit as st
|
| 2 |
import torch
|
| 3 |
import os
|
|
|
|
| 4 |
import time
|
| 5 |
from threading import Thread
|
| 6 |
from transformers import AutoTokenizer, AutoModelForCausalLM, TextIteratorStreamer
|
|
|
|
| 8 |
from langchain_text_splitters import RecursiveCharacterTextSplitter
|
| 9 |
from langchain_community.embeddings import HuggingFaceEmbeddings
|
| 10 |
from langchain.vectorstores import FAISS
|
|
|
|
| 11 |
from langchain.schema import Document
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 12 |
|
| 13 |
# --- HF Token ---
|
| 14 |
HF_TOKEN = st.secrets["HF_TOKEN"]
|
|
|
|
| 17 |
st.set_page_config(page_title="DigiTwin RAG", page_icon="π", layout="centered")
|
| 18 |
st.title("π DigiTs the Twin")
|
| 19 |
|
| 20 |
+
# --- Upload Files Sidebar ---
|
| 21 |
with st.sidebar:
|
| 22 |
st.header("π Upload Knowledge Files")
|
| 23 |
uploaded_files = st.file_uploader("Upload PDFs or .txt files", accept_multiple_files=True, type=["pdf", "txt"])
|
| 24 |
+
if uploaded_files:
|
| 25 |
+
st.success(f"{len(uploaded_files)} file(s) uploaded")
|
|
|
|
|
|
|
|
|
|
|
|
|
| 26 |
|
| 27 |
+
# --- Model Loading ---
|
| 28 |
@st.cache_resource
|
| 29 |
def load_model():
|
| 30 |
+
tokenizer = AutoTokenizer.from_pretrained("amiguel/GM_Qwen1.8B_Finetune", trust_remote_code=True, token=HF_TOKEN)
|
| 31 |
+
model = AutoModelForCausalLM.from_pretrained(
|
| 32 |
+
"amiguel/GM_Qwen1.8B_Finetune",
|
| 33 |
+
device_map="auto",
|
| 34 |
+
torch_dtype=torch.bfloat16 if torch.cuda.is_bf16_supported() else torch.float32,
|
| 35 |
+
trust_remote_code=True,
|
| 36 |
+
token=HF_TOKEN
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 37 |
)
|
| 38 |
+
return model, tokenizer
|
| 39 |
+
|
| 40 |
+
model, tokenizer = load_model()
|
| 41 |
+
|
| 42 |
+
# --- Prompt Helper ---
|
| 43 |
+
SYSTEM_PROMPT = (
|
| 44 |
+
"You are DigiTwin, a digital expert and senior topside engineer specializing in inspection and maintenance "
|
| 45 |
+
"of offshore piping systems, structural elements, mechanical equipment, floating production units, pressure vessels "
|
| 46 |
+
"(with emphasis on Visual Internal Inspection - VII), and pressure safety devices (PSDs). Rely on uploaded documents "
|
| 47 |
+
"and context to provide practical, standards-driven, and technically accurate responses. Your guidance reflects deep "
|
| 48 |
+
"field experience, industry regulations, and proven methodologies in asset integrity and reliability engineering."
|
| 49 |
+
)
|
| 50 |
+
|
| 51 |
+
|
| 52 |
+
def build_prompt(messages, context=""):
|
| 53 |
+
prompt = f"<|im_start|>system\n{SYSTEM_PROMPT}\n\nContext:\n{context}<|im_end|>\n"
|
| 54 |
+
for msg in messages:
|
| 55 |
+
role = msg["role"]
|
| 56 |
+
prompt += f"<|im_start|>{role}\n{msg['content']}<|im_end|>\n"
|
| 57 |
+
prompt += "<|im_start|>assistant\n"
|
| 58 |
+
return prompt
|
| 59 |
|
| 60 |
+
|
| 61 |
+
# --- RAG Embedding and Search ---
|
| 62 |
+
@st.cache_resource
|
| 63 |
+
def embed_uploaded_files(files):
|
| 64 |
+
raw_docs = []
|
| 65 |
+
for f in files:
|
| 66 |
+
file_path = f"/tmp/{f.name}"
|
| 67 |
+
with open(file_path, "wb") as out_file:
|
| 68 |
+
out_file.write(f.read())
|
| 69 |
+
|
| 70 |
+
loader = PyPDFLoader(file_path) if f.name.endswith(".pdf") else TextLoader(file_path)
|
| 71 |
+
raw_docs.extend(loader.load())
|
| 72 |
+
|
| 73 |
+
splitter = RecursiveCharacterTextSplitter(chunk_size=512, chunk_overlap=64)
|
| 74 |
+
chunks = splitter.split_documents(raw_docs)
|
| 75 |
+
embeddings = HuggingFaceEmbeddings(model_name="sentence-transformers/all-MiniLM-L6-v2")
|
| 76 |
+
db = FAISS.from_documents(chunks, embedding=embeddings)
|
| 77 |
+
return db
|
| 78 |
+
|
| 79 |
+
retriever = embed_uploaded_files(uploaded_files) if uploaded_files else None
|
| 80 |
+
|
| 81 |
+
# --- Streaming Response ---
|
| 82 |
+
def generate_response(prompt_text):
|
| 83 |
streamer = TextIteratorStreamer(tokenizer, skip_prompt=True, skip_special_tokens=True)
|
| 84 |
+
inputs = tokenizer(prompt_text, return_tensors="pt").to(model.device)
|
| 85 |
+
thread = Thread(target=model.generate, kwargs={
|
| 86 |
+
"input_ids": inputs["input_ids"],
|
| 87 |
+
"attention_mask": inputs["attention_mask"],
|
| 88 |
+
"max_new_tokens": 1024,
|
| 89 |
+
"temperature": 0.7,
|
| 90 |
+
"top_p": 0.9,
|
| 91 |
+
"repetition_penalty": 1.1,
|
| 92 |
+
"do_sample": True,
|
| 93 |
+
"streamer": streamer
|
| 94 |
+
})
|
| 95 |
thread.start()
|
| 96 |
+
return streamer
|
| 97 |
+
|
| 98 |
+
# --- Avatars & Messages ---
|
| 99 |
+
USER_AVATAR = "https://raw.githubusercontent.com/achilela/vila_fofoka_analysis/9904d9a0d445ab0488cf7395cb863cce7621d897/USER_AVATAR.png"
|
| 100 |
+
BOT_AVATAR = "https://raw.githubusercontent.com/achilela/vila_fofoka_analysis/991f4c6e4e1dc7a8e24876ca5aae5228bcdb4dba/Ataliba_Avatar.jpg"
|
| 101 |
+
|
| 102 |
+
if "messages" not in st.session_state:
|
| 103 |
+
st.session_state.messages = []
|
|
|
|
|
|
|
|
|
|
|
|
|
| 104 |
|
| 105 |
for msg in st.session_state.messages:
|
| 106 |
+
avatar = USER_AVATAR if msg["role"] == "user" else BOT_AVATAR
|
| 107 |
+
with st.chat_message(msg["role"], avatar=avatar):
|
| 108 |
st.markdown(msg["content"])
|
| 109 |
|
| 110 |
# --- Chat UI ---
|
|
|
|
| 114 |
|
| 115 |
context = ""
|
| 116 |
if retriever:
|
| 117 |
+
docs = retriever.similarity_search(prompt, k=3)
|
| 118 |
context = "\n\n".join([d.page_content for d in docs])
|
| 119 |
|
| 120 |
full_prompt = build_prompt(st.session_state.messages, context=context)
|
| 121 |
|
| 122 |
with st.chat_message("assistant", avatar=BOT_AVATAR):
|
| 123 |
+
start_time = time.time()
|
| 124 |
streamer = generate_response(full_prompt)
|
| 125 |
container = st.empty()
|
| 126 |
answer = ""
|
|
|
|
| 128 |
answer += chunk
|
| 129 |
container.markdown(answer + "β", unsafe_allow_html=True)
|
| 130 |
container.markdown(answer)
|
| 131 |
+
st.session_state.messages.append({"role": "assistant", "content": answer})
|