Amir Hallaji commited on
Commit
c46b695
·
1 Parent(s): 8a30d62
Files changed (2) hide show
  1. app.py +39 -0
  2. requirements.txt +1 -0
app.py ADDED
@@ -0,0 +1,39 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ import gradio as gr
2
+ import random
3
+
4
+
5
+ # Placeholder prediction function
6
+ def predict_affinity(smiles, sequence):
7
+ # In practice, you'd call your ML model here
8
+ # For now, we just return a random score between 0 and 1
9
+ score = round(random.uniform(0, 1), 4)
10
+ return f"Predicted Affinity Score: {score}"
11
+
12
+
13
+ with gr.Blocks(title="Molecule-Protein Affinity Predictor") as demo:
14
+ gr.Markdown("## Molecule–Protein Affinity Prediction")
15
+ gr.Markdown(
16
+ "Enter a **Molecule SMILES string** and a **Protein amino acid sequence** "
17
+ "then click **Predict** to get the affinity score."
18
+ )
19
+
20
+ with gr.Row():
21
+ smiles_input = gr.Textbox(
22
+ label="Molecule SMILES",
23
+ placeholder="e.g. CC(=O)OC1=CC=CC=C1C(=O)O"
24
+ )
25
+ sequence_input = gr.Textbox(
26
+ label="Protein Sequence",
27
+ placeholder="e.g. MVLSPADKTNVKAA..."
28
+ )
29
+
30
+ predict_button = gr.Button("Predict")
31
+ output = gr.Textbox(label="Affinity Score", interactive=False)
32
+
33
+ predict_button.click(
34
+ fn=predict_affinity,
35
+ inputs=[smiles_input, sequence_input],
36
+ outputs=output
37
+ )
38
+
39
+ demo.launch()
requirements.txt ADDED
@@ -0,0 +1 @@
 
 
1
+ gradio