Spaces:
Sleeping
Sleeping
add tools
Browse files- tools/chatbot.py +71 -0
- tools/summarizer.py +39 -0
tools/chatbot.py
ADDED
|
@@ -0,0 +1,71 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
from langchain_nvidia_ai_endpoints import ChatNVIDIA
|
| 2 |
+
import streamlit as st
|
| 3 |
+
from tools.summarizer import Summarizer
|
| 4 |
+
from dotenv import load_dotenv
|
| 5 |
+
import os
|
| 6 |
+
|
| 7 |
+
|
| 8 |
+
|
| 9 |
+
load_dotenv()
|
| 10 |
+
|
| 11 |
+
class QuestionAnswering(object):
|
| 12 |
+
def __init__(self, model_name, memory) -> None:
|
| 13 |
+
self.model_name = model_name
|
| 14 |
+
self.memory = memory
|
| 15 |
+
self.llm = ChatNVIDIA(
|
| 16 |
+
model=self.model_name,
|
| 17 |
+
api_key=os.getenv('NV_API_KEY'),
|
| 18 |
+
max_tokens=700,
|
| 19 |
+
temperature=0.01,
|
| 20 |
+
top_p=.7
|
| 21 |
+
)
|
| 22 |
+
self.summarizer = Summarizer()
|
| 23 |
+
|
| 24 |
+
|
| 25 |
+
def generate_answer(self, question:str):
|
| 26 |
+
if self.model_name in ['google/gemma-2-27b-it', 'microsoft/phi-3-medium-128k-instruct']:
|
| 27 |
+
prompt = [
|
| 28 |
+
{
|
| 29 |
+
'role' : "assistant",
|
| 30 |
+
'content' : "You are a helpful and native chatbot who can guide clients to write and talk naturally\
|
| 31 |
+
and reduce their mistakes in the different aspects of their English skills. And please\
|
| 32 |
+
guide users in short and concise answers."
|
| 33 |
+
},
|
| 34 |
+
]
|
| 35 |
+
|
| 36 |
+
else:
|
| 37 |
+
prompt = [
|
| 38 |
+
{
|
| 39 |
+
'role' : "system",
|
| 40 |
+
'content' : "You are a helpful and native chatbot who can guide clients to write and talk naturally\
|
| 41 |
+
and reduce their mistakes in the different aspects of their English skills. And please\
|
| 42 |
+
guide users in short and concise answers."
|
| 43 |
+
},
|
| 44 |
+
]
|
| 45 |
+
|
| 46 |
+
with st.expander('Question'):
|
| 47 |
+
st.write('User: ', question)
|
| 48 |
+
|
| 49 |
+
if len(self.memory) != 0:
|
| 50 |
+
# Save the last 2 conversations
|
| 51 |
+
short_term_memory = self.memory[-4:]
|
| 52 |
+
try:
|
| 53 |
+
summarized_short_term_memory = self.summarizer.summarize(short_term_memory)
|
| 54 |
+
except:
|
| 55 |
+
st.warning(body="Refresh the page or Try it again later.", icon="🤖")
|
| 56 |
+
else:
|
| 57 |
+
prompt.extend(summarized_short_term_memory)
|
| 58 |
+
|
| 59 |
+
user_dict = {'role' : 'user', 'content' : question}
|
| 60 |
+
self.memory.append(user_dict)
|
| 61 |
+
prompt.append(user_dict)
|
| 62 |
+
|
| 63 |
+
res = self.llm.invoke(prompt)
|
| 64 |
+
|
| 65 |
+
assistant_dict = {'role' : res.response_metadata['role'], 'content' : res.content}
|
| 66 |
+
self.memory.append(assistant_dict)
|
| 67 |
+
|
| 68 |
+
with st.expander('Answer'):
|
| 69 |
+
st.write("Assistant: ", assistant_dict['content'])
|
| 70 |
+
|
| 71 |
+
|
tools/summarizer.py
ADDED
|
@@ -0,0 +1,39 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
from langchain_nvidia_ai_endpoints import ChatNVIDIA
|
| 2 |
+
from langchain_core.prompts import PromptTemplate
|
| 3 |
+
from dotenv import load_dotenv
|
| 4 |
+
import os
|
| 5 |
+
|
| 6 |
+
|
| 7 |
+
load_dotenv()
|
| 8 |
+
|
| 9 |
+
template = """
|
| 10 |
+
You are a helpful Summarizer Chatbot who can just summarize the input text and return.
|
| 11 |
+
|
| 12 |
+
User : {input_text}
|
| 13 |
+
|
| 14 |
+
AI : """
|
| 15 |
+
|
| 16 |
+
prompt = PromptTemplate.from_template(template)
|
| 17 |
+
|
| 18 |
+
class Summarizer(object):
|
| 19 |
+
def __init__(self) -> None:
|
| 20 |
+
self.llm = ChatNVIDIA(
|
| 21 |
+
model='google/gemma-2-2b-it',
|
| 22 |
+
api_key=os.getenv('NV_API_KEY'),
|
| 23 |
+
max_tokens=128,
|
| 24 |
+
temperature=0.01,
|
| 25 |
+
top_p=.7
|
| 26 |
+
)
|
| 27 |
+
self.chain = prompt | self.llm
|
| 28 |
+
|
| 29 |
+
|
| 30 |
+
def summarize(self, mem:list):
|
| 31 |
+
summarized_memory = []
|
| 32 |
+
for item in mem:
|
| 33 |
+
if item['role'].lower() == 'user':
|
| 34 |
+
summarized_memory.append(item)
|
| 35 |
+
else:
|
| 36 |
+
summarized_content = self.chain.invoke(item['content']).content
|
| 37 |
+
summarized_memory.append({'role' : item['role'], 'content' : summarized_content})
|
| 38 |
+
|
| 39 |
+
return summarized_memory
|