Upload pages files
Browse files
pages/Analyze_Text.py
ADDED
|
@@ -0,0 +1,174 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
import streamlit as st
|
| 2 |
+
from streamlit.components.v1 import html
|
| 3 |
+
import pandas as pd
|
| 4 |
+
import matplotlib.pyplot as plt
|
| 5 |
+
import plotly.express as px
|
| 6 |
+
from wordcloud.wordcloud import WordCloud
|
| 7 |
+
from configs.db_configs import add_one_item
|
| 8 |
+
from configs.html_features import set_image, HTML_WRAPPER
|
| 9 |
+
|
| 10 |
+
from transformers import AutoTokenizer, AutoModelForSequenceClassification
|
| 11 |
+
|
| 12 |
+
import torch
|
| 13 |
+
from torch.nn.functional import softmax
|
| 14 |
+
|
| 15 |
+
from spacy import displacy
|
| 16 |
+
import spacy
|
| 17 |
+
nlp = spacy.load('en_core_web_sm')
|
| 18 |
+
|
| 19 |
+
from collections import Counter
|
| 20 |
+
import neattext as nt
|
| 21 |
+
import neattext.functions as nfx
|
| 22 |
+
from textblob import TextBlob
|
| 23 |
+
|
| 24 |
+
|
| 25 |
+
def get_tokens_analysis(text):
|
| 26 |
+
doc_obj = nlp(text)
|
| 27 |
+
tokens_stats = [(token.text, token.shape_, token.pos_, token.tag_, token.lemma_, token.is_alpha, token.is_stop) for token in doc_obj]
|
| 28 |
+
tokens_stats_df = pd.DataFrame(tokens_stats, columns=['Token', 'Shape', 'Part-of-Speech', 'Part-of-Speech Tag', 'Root', 'IsAlpha', 'IsStop'])
|
| 29 |
+
return tokens_stats_df
|
| 30 |
+
|
| 31 |
+
|
| 32 |
+
def get_entities_tokens(text):
|
| 33 |
+
doc_obj = nlp(text)
|
| 34 |
+
|
| 35 |
+
html = displacy.render(doc_obj, style='ent')
|
| 36 |
+
html = html.replace('\n\n', '\n')
|
| 37 |
+
entities_tokens_html = HTML_WRAPPER.format(html)
|
| 38 |
+
return entities_tokens_html
|
| 39 |
+
|
| 40 |
+
|
| 41 |
+
def get_word_stats(text):
|
| 42 |
+
text_frame_obj = nt.TextFrame(text)
|
| 43 |
+
word_stats = text_frame_obj.word_stats()
|
| 44 |
+
word_length_freq = text_frame_obj.word_length_freq()
|
| 45 |
+
word_length_df = pd.DataFrame(word_length_freq.items(), columns=['word length', 'frequency'])
|
| 46 |
+
word_length_df['word length'] = word_length_df['word length'].astype(str)
|
| 47 |
+
word_length_df['word length'] = 'length ' + word_length_df['word length']
|
| 48 |
+
custom_color = px.colors.sequential.Blues_r
|
| 49 |
+
figure = px.pie(word_length_df, names='word length', values='frequency', title='Word Percentage Frequency by length', width=400, height=400, color_discrete_sequence=custom_color)
|
| 50 |
+
return word_stats, figure
|
| 51 |
+
|
| 52 |
+
|
| 53 |
+
def plot_top_keywords_frequencies(text, n_top_keywords):
|
| 54 |
+
preprocessed_text = nfx.remove_stopwords(text)
|
| 55 |
+
blob = TextBlob(preprocessed_text)
|
| 56 |
+
words = blob.words
|
| 57 |
+
top_keywords = Counter(words).most_common(n_top_keywords)
|
| 58 |
+
top_keywords_df = pd.DataFrame(top_keywords, columns=['words', 'frequency'])
|
| 59 |
+
figure = px.bar(top_keywords_df, x='words', y='frequency', color='frequency', title=f'the frequency of {n_top_keywords} top keywords', width=400, height=400, color_continuous_scale='Blues')
|
| 60 |
+
return figure
|
| 61 |
+
|
| 62 |
+
|
| 63 |
+
def get_sentence_stats(text):
|
| 64 |
+
blob = TextBlob(text)
|
| 65 |
+
sentences = [str(sentence) for sentence in blob.sentences]
|
| 66 |
+
noun_phrases = list(blob.noun_phrases)
|
| 67 |
+
sentence_stats = {
|
| 68 |
+
'Number of Sentences' : len(sentences),
|
| 69 |
+
'Number of Noun Phrases' : len(noun_phrases)
|
| 70 |
+
}
|
| 71 |
+
sentence_stats_df = pd.DataFrame(sentence_stats, index=[0])
|
| 72 |
+
return sentences, noun_phrases, sentence_stats_df
|
| 73 |
+
|
| 74 |
+
|
| 75 |
+
def plot_tokens_pos(tokens_stats_df):
|
| 76 |
+
pos_df = tokens_stats_df['Part-of-Speech'].value_counts().to_frame().reset_index()
|
| 77 |
+
pos_df.columns = ['Part-of-Speech', 'Frequency']
|
| 78 |
+
figure = px.bar(pos_df, x='Part-of-Speech', y='Frequency', color='Frequency', title=f'The Frequency of Tokens Part of speech', width=400, height=400, color_continuous_scale='Blues')
|
| 79 |
+
return figure
|
| 80 |
+
|
| 81 |
+
|
| 82 |
+
def get_sentiment_analysis_res(text):
|
| 83 |
+
tokenizer = AutoTokenizer.from_pretrained('stevhliu/my_awesome_model')
|
| 84 |
+
inputs = tokenizer(text, return_tensors='pt')
|
| 85 |
+
model = AutoModelForSequenceClassification.from_pretrained('stevhliu/my_awesome_model')
|
| 86 |
+
with torch.no_grad():
|
| 87 |
+
logits = model(**inputs).logits
|
| 88 |
+
|
| 89 |
+
predicted_class_id = logits.argmax().item()
|
| 90 |
+
model.config.id2label = {0:'Negative', 1:'Positive'}
|
| 91 |
+
label = model.config.id2label[predicted_class_id]
|
| 92 |
+
score = float(softmax(logits, dim=1)[0][predicted_class_id])
|
| 93 |
+
sentiment_df = pd.DataFrame([[label, score]], columns=['Text Polarity', 'Belonging Probability'])
|
| 94 |
+
return sentiment_df
|
| 95 |
+
|
| 96 |
+
|
| 97 |
+
def plot_word_frequency(text):
|
| 98 |
+
wc = WordCloud(width=600, height=500).generate(text)
|
| 99 |
+
fig = plt.figure()
|
| 100 |
+
plt.imshow(wc, interpolation='bilinear')
|
| 101 |
+
plt.axis('off')
|
| 102 |
+
return fig
|
| 103 |
+
|
| 104 |
+
def main():
|
| 105 |
+
st.title('Text Analyzer')
|
| 106 |
+
im1, im2, im3 = st.columns([1, 5.3, 1])
|
| 107 |
+
with im1:
|
| 108 |
+
pass
|
| 109 |
+
with im2:
|
| 110 |
+
url = "https://i.postimg.cc/jdF1hPng/combined.png"
|
| 111 |
+
html(set_image(url), height=500, width=500)
|
| 112 |
+
with im3:
|
| 113 |
+
pass
|
| 114 |
+
|
| 115 |
+
text = st.text_area('Text Analyzer', placeholder='Enter your input text here ...', height=200, label_visibility='hidden')
|
| 116 |
+
n_top_keywords = st.sidebar.slider('n Top keywords', 5, 15, 5, 1)
|
| 117 |
+
if st.button('Analyze it'):
|
| 118 |
+
if text != '':
|
| 119 |
+
with st.expander('Original Text'):
|
| 120 |
+
st.write(text)
|
| 121 |
+
add_one_item(text, 'Text Analyzer')
|
| 122 |
+
|
| 123 |
+
with st.expander('Text Analysis'):
|
| 124 |
+
tokens_stats_df = get_tokens_analysis(text)
|
| 125 |
+
st.dataframe(tokens_stats_df)
|
| 126 |
+
|
| 127 |
+
with st.expander('Text Entities'):
|
| 128 |
+
entities_tokens_html = get_entities_tokens(text)
|
| 129 |
+
html(entities_tokens_html, height=300, scrolling=True)
|
| 130 |
+
|
| 131 |
+
col11, col12 = st.columns(2)
|
| 132 |
+
with col11:
|
| 133 |
+
with st.expander('Word Statistics'):
|
| 134 |
+
word_stats_json, figure = get_word_stats(text)
|
| 135 |
+
st.json(word_stats_json)
|
| 136 |
+
st.plotly_chart(figure)
|
| 137 |
+
|
| 138 |
+
with col12:
|
| 139 |
+
with st.expander(f'The Frequency of {n_top_keywords} Top Keywords'):
|
| 140 |
+
figure = plot_top_keywords_frequencies(text, n_top_keywords)
|
| 141 |
+
st.plotly_chart(figure)
|
| 142 |
+
|
| 143 |
+
col21, col22 = st.columns(2)
|
| 144 |
+
with col21:
|
| 145 |
+
with st.expander('Sentence Statistics'):
|
| 146 |
+
sentences, noun_phrases, sentence_stats_df = get_sentence_stats(text)
|
| 147 |
+
st.dataframe(sentence_stats_df)
|
| 148 |
+
st.write('Sentences:\n', sentences)
|
| 149 |
+
st.write('Noun Phrases:\n', noun_phrases)
|
| 150 |
+
|
| 151 |
+
with col22:
|
| 152 |
+
with st.expander('The Frequency of Tokens Part of speech'):
|
| 153 |
+
figure = plot_tokens_pos(tokens_stats_df)
|
| 154 |
+
st.plotly_chart(figure)
|
| 155 |
+
|
| 156 |
+
col31, col32 = st.columns(2)
|
| 157 |
+
with col31:
|
| 158 |
+
with st.expander('Sentiment Analysis'):
|
| 159 |
+
sentiment_df = get_sentiment_analysis_res(text)
|
| 160 |
+
st.dataframe(sentiment_df)
|
| 161 |
+
|
| 162 |
+
with col32:
|
| 163 |
+
with st.expander('Word Frequency'):
|
| 164 |
+
fig = plot_word_frequency(text)
|
| 165 |
+
st.pyplot(fig)
|
| 166 |
+
|
| 167 |
+
else:
|
| 168 |
+
st.error('Please enter a non-empty text.')
|
| 169 |
+
|
| 170 |
+
|
| 171 |
+
if __name__ == '__main__':
|
| 172 |
+
main()
|
| 173 |
+
|
| 174 |
+
|
pages/Find_Topic.py
ADDED
|
@@ -0,0 +1,51 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
import streamlit as st
|
| 2 |
+
import numpy as np
|
| 3 |
+
from sklearn.feature_extraction.text import CountVectorizer
|
| 4 |
+
from scipy import linalg
|
| 5 |
+
import regex as re
|
| 6 |
+
from configs.db_configs import add_one_item
|
| 7 |
+
from streamlit.components.v1 import html
|
| 8 |
+
from configs.html_features import set_image
|
| 9 |
+
|
| 10 |
+
|
| 11 |
+
def preprocess_text(text):
|
| 12 |
+
vectorizer = CountVectorizer(stop_words='english')
|
| 13 |
+
vector = vectorizer.fit_transform([text]).todense()
|
| 14 |
+
vocab = np.array(vectorizer.get_feature_names_out())
|
| 15 |
+
U, s, Vh = linalg.svd(vector, full_matrices=False)
|
| 16 |
+
return vocab, U, s, Vh
|
| 17 |
+
|
| 18 |
+
|
| 19 |
+
def show_topics(text, num_top_words):
|
| 20 |
+
vocab, U, s, Vh = preprocess_text(text)
|
| 21 |
+
pattern = '\d+'
|
| 22 |
+
top_words = lambda Vh: [vocab[i] for i in np.argsort(Vh)[:-num_top_words-1:-1]]
|
| 23 |
+
topic_words = top_words(Vh[0])
|
| 24 |
+
topic_words = ' '.join(topic_words)
|
| 25 |
+
return ' '.join([re.sub(pattern, '', word) for word in topic_words.split()])
|
| 26 |
+
|
| 27 |
+
|
| 28 |
+
def main():
|
| 29 |
+
st.title('Topic Modeling by Top Keywords')
|
| 30 |
+
im1, im2, im3 = st.columns([1, 5.3, 1])
|
| 31 |
+
with im1:
|
| 32 |
+
pass
|
| 33 |
+
with im2:
|
| 34 |
+
url = "https://i.postimg.cc/jdF1hPng/combined.png"
|
| 35 |
+
html(set_image(url), height=500, width=500)
|
| 36 |
+
with im3:
|
| 37 |
+
pass
|
| 38 |
+
text = st.text_area('Find Topic', placeholder='Enter your input text here ...', height=200, label_visibility='hidden')
|
| 39 |
+
num_top_words = st.sidebar.slider('Number of Top Keywords', min_value=5, max_value=20, step=1, value=10)
|
| 40 |
+
if st.button('Find Topic'):
|
| 41 |
+
if text != '':
|
| 42 |
+
with st.expander('Original Text'):
|
| 43 |
+
st.write(text)
|
| 44 |
+
add_one_item(text, 'Topic Modeling')
|
| 45 |
+
|
| 46 |
+
with st.expander(f'Show Topic by {num_top_words} Top Keywords'):
|
| 47 |
+
topic_words = show_topics(text, num_top_words)
|
| 48 |
+
st.write(topic_words)
|
| 49 |
+
|
| 50 |
+
if __name__ == '__main__':
|
| 51 |
+
main()
|
pages/Summarize_Text.py
ADDED
|
@@ -0,0 +1,57 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
import streamlit as st
|
| 2 |
+
from transformers import AutoTokenizer, AutoModelForSeq2SeqLM
|
| 3 |
+
from configs.download_files import FileDownloader
|
| 4 |
+
from configs.db_configs import add_one_item
|
| 5 |
+
from streamlit.components.v1 import html
|
| 6 |
+
from configs.html_features import set_image
|
| 7 |
+
|
| 8 |
+
def summarize_text(text):
|
| 9 |
+
prefix = 'summarize: '
|
| 10 |
+
text = prefix + text
|
| 11 |
+
tokenizer = AutoTokenizer.from_pretrained('stevhliu/my_awesome_billsum_model')
|
| 12 |
+
input_ids = tokenizer(text=text, return_tensors='pt')['input_ids']
|
| 13 |
+
model = AutoModelForSeq2SeqLM.from_pretrained('stevhliu/my_awesome_billsum_model')
|
| 14 |
+
|
| 15 |
+
if len(input_ids[0]) < 200:
|
| 16 |
+
output_ids = model.generate(input_ids, max_new_tokens=100, do_sample=False)
|
| 17 |
+
summarized_text = tokenizer.decode(output_ids[0], skip_special_tokens=True)
|
| 18 |
+
return summarized_text
|
| 19 |
+
|
| 20 |
+
elif len(input_ids[0]) > 200:
|
| 21 |
+
output_ids = model.generate(input_ids, max_new_tokens=round(len(input_ids[0]) * 1/2), do_sample=False)
|
| 22 |
+
summarized_text = tokenizer.decode(output_ids[0], skip_special_tokens=True)
|
| 23 |
+
return summarized_text
|
| 24 |
+
|
| 25 |
+
|
| 26 |
+
def main():
|
| 27 |
+
st.title('Text Summarizer')
|
| 28 |
+
im1, im2, im3 = st.columns([1, 5.3, 1])
|
| 29 |
+
with im1:
|
| 30 |
+
pass
|
| 31 |
+
with im2:
|
| 32 |
+
url = "https://i.postimg.cc/jdF1hPng/combined.png"
|
| 33 |
+
html(set_image(url), height=500, width=500)
|
| 34 |
+
with im3:
|
| 35 |
+
pass
|
| 36 |
+
text = st.text_area('Text Summarizer', placeholder='Enter your input text here ...', height=200, label_visibility='hidden')
|
| 37 |
+
|
| 38 |
+
if st.button('Summarize it'):
|
| 39 |
+
if text != "":
|
| 40 |
+
with st.expander('Original Text'):
|
| 41 |
+
st.write(text)
|
| 42 |
+
add_one_item(text, "Text Summarizer")
|
| 43 |
+
|
| 44 |
+
with st.expander('Summarized Text'):
|
| 45 |
+
summarized_text = summarize_text(text)
|
| 46 |
+
st.write(summarized_text)
|
| 47 |
+
|
| 48 |
+
with st.expander('Download Summarized Text'):
|
| 49 |
+
FileDownloader(summarized_text, 'txt').download()
|
| 50 |
+
|
| 51 |
+
else:
|
| 52 |
+
st.error('Please enter a non-empty text.')
|
| 53 |
+
|
| 54 |
+
|
| 55 |
+
if __name__ == '__main__':
|
| 56 |
+
main()
|
| 57 |
+
|
pages/Translate_Text.py
ADDED
|
@@ -0,0 +1,54 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
import streamlit as st
|
| 2 |
+
from transformers import AutoTokenizer, AutoModelForSeq2SeqLM
|
| 3 |
+
from configs.download_files import FileDownloader
|
| 4 |
+
from configs.db_configs import add_one_item
|
| 5 |
+
from streamlit.components.v1 import html
|
| 6 |
+
from configs.html_features import set_image
|
| 7 |
+
|
| 8 |
+
def translate_text_to_text(text, source_lang, target_lang):
|
| 9 |
+
prefix = f'translate {source_lang} to {target_lang}: '
|
| 10 |
+
text = prefix + text
|
| 11 |
+
tokenizer = AutoTokenizer.from_pretrained('stevhliu/my_awesome_opus_books_model')
|
| 12 |
+
input_ids = tokenizer(text, return_tensors='pt').input_ids
|
| 13 |
+
model = AutoModelForSeq2SeqLM.from_pretrained('stevhliu/my_awesome_opus_books_model')
|
| 14 |
+
output_ids = model.generate(input_ids, max_new_tokens=len(input_ids[0]) * 3, do_sample=False)
|
| 15 |
+
translated_text = tokenizer.decode(output_ids[0], skip_special_tokens=True)
|
| 16 |
+
return translated_text
|
| 17 |
+
|
| 18 |
+
|
| 19 |
+
def main():
|
| 20 |
+
st.title('Text Translator')
|
| 21 |
+
im1, im2, im3 = st.columns([1, 5.3, 1])
|
| 22 |
+
with im1:
|
| 23 |
+
pass
|
| 24 |
+
with im2:
|
| 25 |
+
url = "https://i.postimg.cc/jdF1hPng/combined.png"
|
| 26 |
+
html(set_image(url), height=500, width=500)
|
| 27 |
+
with im3:
|
| 28 |
+
pass
|
| 29 |
+
languages = ['English', 'French']
|
| 30 |
+
source_lang = st.sidebar.selectbox('Source Language', languages)
|
| 31 |
+
target_lang = st.sidebar.selectbox('Target Language', languages, index=1)
|
| 32 |
+
text = st.text_area('Text Translator', placeholder='Enter your input text here ...', height=200, label_visibility='hidden')
|
| 33 |
+
if st.button('translate it'):
|
| 34 |
+
if text != '':
|
| 35 |
+
if (source_lang == 'English' and target_lang == 'English') or (source_lang == 'French' and target_lang == 'French'):
|
| 36 |
+
st.error('Expected different values for source and target languages, but got the same values!')
|
| 37 |
+
|
| 38 |
+
else:
|
| 39 |
+
with st.expander('Original Text'):
|
| 40 |
+
st.write(text)
|
| 41 |
+
add_one_item(text, 'Text Translator')
|
| 42 |
+
|
| 43 |
+
with st.expander('Translated Text'):
|
| 44 |
+
translated_text = translate_text_to_text(text, source_lang, target_lang)
|
| 45 |
+
st.write(translated_text)
|
| 46 |
+
|
| 47 |
+
with st.expander('Download Translated Text'):
|
| 48 |
+
FileDownloader(translated_text, 'txt').download()
|
| 49 |
+
else:
|
| 50 |
+
st.error('Please enter a non-empty text.')
|
| 51 |
+
|
| 52 |
+
|
| 53 |
+
if __name__ == '__main__':
|
| 54 |
+
main()
|
pages/__pycache__/text_analysis.cpython-310.pyc
ADDED
|
Binary file (785 Bytes). View file
|
|
|
pages/__pycache__/text_summarization.cpython-310.pyc
ADDED
|
Binary file (680 Bytes). View file
|
|
|