Update pages/Analyze_Text.py
Browse files- pages/Analyze_Text.py +20 -21
pages/Analyze_Text.py
CHANGED
|
@@ -49,19 +49,9 @@ def get_word_stats(text):
|
|
| 49 |
|
| 50 |
def plot_top_keywords_frequencies(text, n_top_keywords):
|
| 51 |
preprocessed_text = nfx.remove_stopwords(text)
|
| 52 |
-
blob = TextBlob(preprocessed_text)
|
| 53 |
-
words = blob.words
|
| 54 |
-
top_keywords = Counter(words).most_common(n_top_keywords)
|
| 55 |
-
top_keywords_df = pd.DataFrame(top_keywords, columns=['words', 'frequency'])
|
| 56 |
-
figure = px.bar(top_keywords_df, x='words', y='frequency', color='frequency', title=f'the frequency of {n_top_keywords} top keywords', width=400, height=400, color_continuous_scale='Blues')
|
| 57 |
-
return figure
|
| 58 |
-
|
| 59 |
-
|
| 60 |
-
def get_sentence_stats(text):
|
| 61 |
try:
|
| 62 |
-
blob = TextBlob(
|
| 63 |
-
|
| 64 |
-
noun_phrases = list(blob.noun_phrases)
|
| 65 |
except:
|
| 66 |
# These corpora are commonly used by TextBlob for various natural language processing tasks.
|
| 67 |
nltk.download('brown')
|
|
@@ -71,16 +61,25 @@ def get_sentence_stats(text):
|
|
| 71 |
nltk.download('conll2000')
|
| 72 |
nltk.download('movie_reviews')
|
| 73 |
|
| 74 |
-
blob = TextBlob(
|
| 75 |
-
|
| 76 |
-
noun_phrases = list(blob.noun_phrases)
|
| 77 |
finally:
|
| 78 |
-
|
| 79 |
-
|
| 80 |
-
|
| 81 |
-
|
| 82 |
-
|
| 83 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 84 |
|
| 85 |
|
| 86 |
def plot_tokens_pos(tokens_stats_df):
|
|
|
|
| 49 |
|
| 50 |
def plot_top_keywords_frequencies(text, n_top_keywords):
|
| 51 |
preprocessed_text = nfx.remove_stopwords(text)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 52 |
try:
|
| 53 |
+
blob = TextBlob(preprocessed_text)
|
| 54 |
+
words = blob.words
|
|
|
|
| 55 |
except:
|
| 56 |
# These corpora are commonly used by TextBlob for various natural language processing tasks.
|
| 57 |
nltk.download('brown')
|
|
|
|
| 61 |
nltk.download('conll2000')
|
| 62 |
nltk.download('movie_reviews')
|
| 63 |
|
| 64 |
+
blob = TextBlob(preprocessed_text)
|
| 65 |
+
words = blob.words
|
|
|
|
| 66 |
finally:
|
| 67 |
+
top_keywords = Counter(words).most_common(n_top_keywords)
|
| 68 |
+
top_keywords_df = pd.DataFrame(top_keywords, columns=['words', 'frequency'])
|
| 69 |
+
figure = px.bar(top_keywords_df, x='words', y='frequency', color='frequency', title=f'the frequency of {n_top_keywords} top keywords', width=400, height=400, color_continuous_scale='Blues')
|
| 70 |
+
return figure
|
| 71 |
+
|
| 72 |
+
|
| 73 |
+
def get_sentence_stats(text):
|
| 74 |
+
blob = TextBlob(text)
|
| 75 |
+
sentences = [str(sentence) for sentence in blob.sentences]
|
| 76 |
+
noun_phrases = list(blob.noun_phrases)
|
| 77 |
+
sentence_stats = {
|
| 78 |
+
'Number of Sentences' : len(sentences),
|
| 79 |
+
'Number of Noun Phrases' : len(noun_phrases)
|
| 80 |
+
}
|
| 81 |
+
sentence_stats_df = pd.DataFrame(sentence_stats, index=[0])
|
| 82 |
+
return sentences, noun_phrases, sentence_stats_df
|
| 83 |
|
| 84 |
|
| 85 |
def plot_tokens_pos(tokens_stats_df):
|