Spaces:
Sleeping
Sleeping
| # Copyright (c) 2023 Amphion. | |
| # | |
| # This source code is licensed under the MIT license found in the | |
| # LICENSE file in the root directory of this source tree. | |
| import torch | |
| import numpy as np | |
| import torch.nn as nn | |
| import torch.nn.functional as F | |
| from torch.nn import Conv1d, ConvTranspose1d | |
| from torch.nn.utils import weight_norm, remove_weight_norm, spectral_norm | |
| from modules.neural_source_filter import * | |
| from modules.vocoder_blocks import * | |
| LRELU_SLOPE = 0.1 | |
| class ResBlock1(nn.Module): | |
| def __init__(self, cfg, channels, kernel_size=3, dilation=(1, 3, 5)): | |
| super(ResBlock1, self).__init__() | |
| self.cfg = cfg | |
| self.convs1 = nn.ModuleList( | |
| [ | |
| weight_norm( | |
| Conv1d( | |
| channels, | |
| channels, | |
| kernel_size, | |
| 1, | |
| dilation=dilation[0], | |
| padding=get_padding(kernel_size, dilation[0]), | |
| ) | |
| ), | |
| weight_norm( | |
| Conv1d( | |
| channels, | |
| channels, | |
| kernel_size, | |
| 1, | |
| dilation=dilation[1], | |
| padding=get_padding(kernel_size, dilation[1]), | |
| ) | |
| ), | |
| weight_norm( | |
| Conv1d( | |
| channels, | |
| channels, | |
| kernel_size, | |
| 1, | |
| dilation=dilation[2], | |
| padding=get_padding(kernel_size, dilation[2]), | |
| ) | |
| ), | |
| ] | |
| ) | |
| self.convs1.apply(init_weights) | |
| self.convs2 = nn.ModuleList( | |
| [ | |
| weight_norm( | |
| Conv1d( | |
| channels, | |
| channels, | |
| kernel_size, | |
| 1, | |
| dilation=1, | |
| padding=get_padding(kernel_size, 1), | |
| ) | |
| ), | |
| weight_norm( | |
| Conv1d( | |
| channels, | |
| channels, | |
| kernel_size, | |
| 1, | |
| dilation=1, | |
| padding=get_padding(kernel_size, 1), | |
| ) | |
| ), | |
| weight_norm( | |
| Conv1d( | |
| channels, | |
| channels, | |
| kernel_size, | |
| 1, | |
| dilation=1, | |
| padding=get_padding(kernel_size, 1), | |
| ) | |
| ), | |
| ] | |
| ) | |
| self.convs2.apply(init_weights) | |
| def forward(self, x): | |
| for c1, c2 in zip(self.convs1, self.convs2): | |
| xt = F.leaky_relu(x, LRELU_SLOPE) | |
| xt = c1(xt) | |
| xt = F.leaky_relu(xt, LRELU_SLOPE) | |
| xt = c2(xt) | |
| x = xt + x | |
| return x | |
| def remove_weight_norm(self): | |
| for l in self.convs1: | |
| remove_weight_norm(l) | |
| for l in self.convs2: | |
| remove_weight_norm(l) | |
| class ResBlock2(nn.Module): | |
| def __init__(self, cfg, channels, kernel_size=3, dilation=(1, 3)): | |
| super(ResBlock1, self).__init__() | |
| self.cfg = cfg | |
| self.convs = nn.ModuleList( | |
| [ | |
| weight_norm( | |
| Conv1d( | |
| channels, | |
| channels, | |
| kernel_size, | |
| 1, | |
| dilation=dilation[0], | |
| padding=get_padding(kernel_size, dilation[0]), | |
| ) | |
| ), | |
| weight_norm( | |
| Conv1d( | |
| channels, | |
| channels, | |
| kernel_size, | |
| 1, | |
| dilation=dilation[1], | |
| padding=get_padding(kernel_size, dilation[1]), | |
| ) | |
| ), | |
| ] | |
| ) | |
| self.convs.apply(init_weights) | |
| def forward(self, x): | |
| for c in self.convs: | |
| xt = F.leaky_relu(x, LRELU_SLOPE) | |
| xt = c(xt) | |
| x = xt + x | |
| return x | |
| def remove_weight_norm(self): | |
| for l in self.convs: | |
| remove_weight_norm(l) | |
| # This NSF Module is adopted from Xin Wang's NSF under the MIT License | |
| # https://github.com/nii-yamagishilab/project-NN-Pytorch-scripts | |
| class SourceModuleHnNSF(nn.Module): | |
| def __init__( | |
| self, fs, harmonic_num=0, amp=0.1, noise_std=0.003, voiced_threshold=0 | |
| ): | |
| super(SourceModuleHnNSF, self).__init__() | |
| self.amp = amp | |
| self.noise_std = noise_std | |
| self.l_sin_gen = SineGen(fs, harmonic_num, amp, noise_std, voiced_threshold) | |
| self.l_linear = nn.Linear(harmonic_num + 1, 1) | |
| self.l_tanh = nn.Tanh() | |
| def forward(self, x, upp): | |
| sine_wavs, uv, _ = self.l_sin_gen(x, upp) | |
| sine_merge = self.l_tanh(self.l_linear(sine_wavs)) | |
| return sine_merge | |
| class NSFHiFiGAN(nn.Module): | |
| def __init__(self, cfg): | |
| super(NSFHiFiGAN, self).__init__() | |
| self.cfg = cfg | |
| self.num_kernels = len(self.cfg.model.nsfhifigan.resblock_kernel_sizes) | |
| self.num_upsamples = len(self.cfg.model.nsfhifigan.upsample_rates) | |
| self.m_source = SourceModuleHnNSF( | |
| fs=self.cfg.preprocess.sample_rate, | |
| harmonic_num=self.cfg.model.nsfhifigan.harmonic_num, | |
| ) | |
| self.noise_convs = nn.ModuleList() | |
| self.conv_pre = weight_norm( | |
| Conv1d( | |
| self.cfg.preprocess.n_mel, | |
| self.cfg.model.nsfhifigan.upsample_initial_channel, | |
| 7, | |
| 1, | |
| padding=3, | |
| ) | |
| ) | |
| resblock = ResBlock1 if self.cfg.model.nsfhifigan.resblock == "1" else ResBlock2 | |
| self.ups = nn.ModuleList() | |
| for i, (u, k) in enumerate( | |
| zip( | |
| self.cfg.model.nsfhifigan.upsample_rates, | |
| self.cfg.model.nsfhifigan.upsample_kernel_sizes, | |
| ) | |
| ): | |
| c_cur = self.cfg.model.nsfhifigan.upsample_initial_channel // (2 ** (i + 1)) | |
| self.ups.append( | |
| weight_norm( | |
| ConvTranspose1d( | |
| self.cfg.model.nsfhifigan.upsample_initial_channel // (2**i), | |
| self.cfg.model.nsfhifigan.upsample_initial_channel | |
| // (2 ** (i + 1)), | |
| k, | |
| u, | |
| padding=(k - u) // 2, | |
| ) | |
| ) | |
| ) | |
| if i + 1 < len(self.cfg.model.nsfhifigan.upsample_rates): | |
| stride_f0 = int( | |
| np.prod(self.cfg.model.nsfhifigan.upsample_rates[i + 1 :]) | |
| ) | |
| self.noise_convs.append( | |
| Conv1d( | |
| 1, | |
| c_cur, | |
| kernel_size=stride_f0 * 2, | |
| stride=stride_f0, | |
| padding=stride_f0 // 2, | |
| ) | |
| ) | |
| else: | |
| self.noise_convs.append(Conv1d(1, c_cur, kernel_size=1)) | |
| self.resblocks = nn.ModuleList() | |
| ch = self.cfg.model.nsfhifigan.upsample_initial_channel | |
| for i in range(len(self.ups)): | |
| ch //= 2 | |
| for j, (k, d) in enumerate( | |
| zip( | |
| self.cfg.model.nsfhifigan.resblock_kernel_sizes, | |
| self.cfg.model.nsfhifigan.resblock_dilation_sizes, | |
| ) | |
| ): | |
| self.resblocks.append(resblock(cfg, ch, k, d)) | |
| self.conv_post = weight_norm(Conv1d(ch, 1, 7, 1, padding=3)) | |
| self.ups.apply(init_weights) | |
| self.conv_post.apply(init_weights) | |
| self.upp = int(np.prod(self.cfg.model.nsfhifigan.upsample_rates)) | |
| def forward(self, x, f0): | |
| har_source = self.m_source(f0, self.upp).transpose(1, 2) | |
| x = self.conv_pre(x) | |
| for i in range(self.num_upsamples): | |
| x = F.leaky_relu(x, LRELU_SLOPE) | |
| x = self.ups[i](x) | |
| x_source = self.noise_convs[i](har_source) | |
| length = min(x.shape[-1], x_source.shape[-1]) | |
| x = x[:, :, :length] | |
| x_source = x[:, :, :length] | |
| x = x + x_source | |
| xs = None | |
| for j in range(self.num_kernels): | |
| if xs is None: | |
| xs = self.resblocks[i * self.num_kernels + j](x) | |
| else: | |
| xs += self.resblocks[i * self.num_kernels + j](x) | |
| x = xs / self.num_kernels | |
| x = F.leaky_relu(x) | |
| x = self.conv_post(x) | |
| x = torch.tanh(x) | |
| return x | |