Spaces:
Running
Running
| # Copyright (c) 2023 Amphion. | |
| # | |
| # This source code is licensed under the MIT license found in the | |
| # LICENSE file in the root directory of this source tree. | |
| import torch | |
| from diffusers import DDPMScheduler | |
| from models.svc.base import SVCTrainer | |
| from modules.encoder.condition_encoder import ConditionEncoder | |
| from .diffusion_wrapper import DiffusionWrapper | |
| class DiffusionTrainer(SVCTrainer): | |
| r"""The base trainer for all diffusion models. It inherits from SVCTrainer and | |
| implements ``_build_model`` and ``_forward_step`` methods. | |
| """ | |
| def __init__(self, args=None, cfg=None): | |
| SVCTrainer.__init__(self, args, cfg) | |
| # Only for SVC tasks using diffusion | |
| self.noise_scheduler = DDPMScheduler( | |
| **self.cfg.model.diffusion.scheduler_settings, | |
| ) | |
| self.diffusion_timesteps = ( | |
| self.cfg.model.diffusion.scheduler_settings.num_train_timesteps | |
| ) | |
| ### Following are methods only for diffusion models ### | |
| def _build_model(self): | |
| r"""Build the model for training. This function is called in ``__init__`` function.""" | |
| # TODO: sort out the config | |
| self.cfg.model.condition_encoder.f0_min = self.cfg.preprocess.f0_min | |
| self.cfg.model.condition_encoder.f0_max = self.cfg.preprocess.f0_max | |
| self.condition_encoder = ConditionEncoder(self.cfg.model.condition_encoder) | |
| self.acoustic_mapper = DiffusionWrapper(self.cfg) | |
| model = torch.nn.ModuleList([self.condition_encoder, self.acoustic_mapper]) | |
| num_of_params_encoder = self.count_parameters(self.condition_encoder) | |
| num_of_params_am = self.count_parameters(self.acoustic_mapper) | |
| num_of_params = num_of_params_encoder + num_of_params_am | |
| log = "Diffusion Model's Parameters: #Encoder is {:.2f}M, #Diffusion is {:.2f}M. The total is {:.2f}M".format( | |
| num_of_params_encoder / 1e6, num_of_params_am / 1e6, num_of_params / 1e6 | |
| ) | |
| self.logger.info(log) | |
| return model | |
| def count_parameters(self, model): | |
| model_param = 0.0 | |
| if isinstance(model, dict): | |
| for key, value in model.items(): | |
| model_param += sum(p.numel() for p in model[key].parameters()) | |
| else: | |
| model_param = sum(p.numel() for p in model.parameters()) | |
| return model_param | |
| def _forward_step(self, batch): | |
| r"""Forward step for training and inference. This function is called | |
| in ``_train_step`` & ``_test_step`` function. | |
| """ | |
| device = self.accelerator.device | |
| mel_input = batch["mel"] | |
| noise = torch.randn_like(mel_input, device=device, dtype=torch.float32) | |
| batch_size = mel_input.size(0) | |
| timesteps = torch.randint( | |
| 0, | |
| self.diffusion_timesteps, | |
| (batch_size,), | |
| device=device, | |
| dtype=torch.long, | |
| ) | |
| noisy_mel = self.noise_scheduler.add_noise(mel_input, noise, timesteps) | |
| conditioner = self.condition_encoder(batch) | |
| y_pred = self.acoustic_mapper(noisy_mel, timesteps, conditioner) | |
| # TODO: Predict noise or gt should be configurable | |
| loss = self._compute_loss(self.criterion, y_pred, noise, batch["mask"]) | |
| self._check_nan(loss, y_pred, noise) | |
| # FIXME: Clarify that we should not divide it with batch size here | |
| return loss | |