Spaces:
Runtime error
Runtime error
| # coding=utf-8 | |
| # Copyright 2018 The Google AI Language Team Authors and The HuggingFace Inc. team. | |
| # Copyright (c) 2018, NVIDIA CORPORATION. All rights reserved. | |
| # | |
| # Licensed under the Apache License, Version 2.0 (the "License"); | |
| # you may not use this file except in compliance with the License. | |
| # You may obtain a copy of the License at | |
| # | |
| # http://www.apache.org/licenses/LICENSE-2.0 | |
| # | |
| # Unless required by applicable law or agreed to in writing, software | |
| # distributed under the License is distributed on an "AS IS" BASIS, | |
| # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. | |
| # See the License for the specific language governing permissions and | |
| # limitations under the License. | |
| """PyTorch RoBERTa model.""" | |
| import math | |
| from typing import List, Optional, Tuple, Union | |
| import torch | |
| import torch.utils.checkpoint | |
| from packaging import version | |
| from torch import nn | |
| from torch.nn import BCEWithLogitsLoss, CrossEntropyLoss, MSELoss | |
| from transformers.activations import ACT2FN, gelu | |
| from transformers.modeling_outputs import ( | |
| BaseModelOutputWithPastAndCrossAttentions, | |
| BaseModelOutputWithPoolingAndCrossAttentions, | |
| CausalLMOutputWithCrossAttentions, | |
| MaskedLMOutput, | |
| MultipleChoiceModelOutput, | |
| QuestionAnsweringModelOutput, | |
| SequenceClassifierOutput, | |
| TokenClassifierOutput, | |
| ) | |
| from transformers.modeling_utils import PreTrainedModel | |
| from transformers.pytorch_utils import apply_chunking_to_forward, find_pruneable_heads_and_indices, prune_linear_layer | |
| from transformers.utils import ( | |
| add_code_sample_docstrings, | |
| add_start_docstrings, | |
| add_start_docstrings_to_model_forward, | |
| logging, | |
| replace_return_docstrings, | |
| ) | |
| from transformers.models.roberta.configuration_roberta import RobertaConfig | |
| logger = logging.get_logger(__name__) | |
| _CHECKPOINT_FOR_DOC = "roberta-base" | |
| _CONFIG_FOR_DOC = "RobertaConfig" | |
| _TOKENIZER_FOR_DOC = "RobertaTokenizer" | |
| ROBERTA_PRETRAINED_MODEL_ARCHIVE_LIST = [ | |
| "roberta-base", | |
| "roberta-large", | |
| "roberta-large-mnli", | |
| "distilroberta-base", | |
| "roberta-base-openai-detector", | |
| "roberta-large-openai-detector", | |
| # See all RoBERTa models at https://huggingface.co/models?filter=roberta | |
| ] | |
| class RobertaEmbeddings(nn.Module): | |
| """ | |
| Same as BertEmbeddings with a tiny tweak for positional embeddings indexing. | |
| """ | |
| # Copied from transformers.models.bert.modeling_bert.BertEmbeddings.__init__ | |
| def __init__(self, config): | |
| super().__init__() | |
| self.word_embeddings = nn.Embedding(config.vocab_size, config.hidden_size, padding_idx=config.pad_token_id) | |
| self.position_embeddings = nn.Embedding(config.max_position_embeddings, config.hidden_size) | |
| self.token_type_embeddings = nn.Embedding(config.type_vocab_size, config.hidden_size) | |
| # self.LayerNorm is not snake-cased to stick with TensorFlow model variable name and be able to load | |
| # any TensorFlow checkpoint file | |
| self.LayerNorm = nn.LayerNorm(config.hidden_size, eps=config.layer_norm_eps) | |
| self.dropout = nn.Dropout(config.hidden_dropout_prob) | |
| # position_ids (1, len position emb) is contiguous in memory and exported when serialized | |
| self.position_embedding_type = getattr(config, "position_embedding_type", "absolute") | |
| self.register_buffer("position_ids", torch.arange(config.max_position_embeddings).expand((1, -1))) | |
| if version.parse(torch.__version__) > version.parse("1.6.0"): | |
| self.register_buffer( | |
| "token_type_ids", | |
| torch.zeros(self.position_ids.size(), dtype=torch.long), | |
| persistent=False, | |
| ) | |
| # End copy | |
| self.padding_idx = config.pad_token_id | |
| self.position_embeddings = nn.Embedding( | |
| config.max_position_embeddings, config.hidden_size, padding_idx=self.padding_idx | |
| ) | |
| def forward( | |
| self, input_ids=None, token_type_ids=None, position_ids=None, inputs_embeds=None, past_key_values_length=0 | |
| ): | |
| if position_ids is None: | |
| if input_ids is not None: | |
| # Create the position ids from the input token ids. Any padded tokens remain padded. | |
| position_ids = create_position_ids_from_input_ids(input_ids, self.padding_idx, past_key_values_length) | |
| else: | |
| position_ids = self.create_position_ids_from_inputs_embeds(inputs_embeds) | |
| if input_ids is not None: | |
| input_shape = input_ids.size() | |
| else: | |
| input_shape = inputs_embeds.size()[:-1] | |
| seq_length = input_shape[1] | |
| # Setting the token_type_ids to the registered buffer in constructor where it is all zeros, which usually occurs | |
| # when its auto-generated, registered buffer helps users when tracing the model without passing token_type_ids, solves | |
| # issue #5664 | |
| if token_type_ids is None: | |
| if hasattr(self, "token_type_ids"): | |
| buffered_token_type_ids = self.token_type_ids[:, :seq_length] | |
| buffered_token_type_ids_expanded = buffered_token_type_ids.expand(input_shape[0], seq_length) | |
| token_type_ids = buffered_token_type_ids_expanded | |
| else: | |
| token_type_ids = torch.zeros(input_shape, dtype=torch.long, device=self.position_ids.device) | |
| if inputs_embeds is None: | |
| inputs_embeds = self.word_embeddings(input_ids) | |
| token_type_embeddings = self.token_type_embeddings(token_type_ids) | |
| embeddings = inputs_embeds + token_type_embeddings | |
| if self.position_embedding_type == "absolute": | |
| position_embeddings = self.position_embeddings(position_ids) | |
| embeddings += position_embeddings | |
| embeddings = self.LayerNorm(embeddings) | |
| embeddings = self.dropout(embeddings) | |
| return embeddings | |
| def create_position_ids_from_inputs_embeds(self, inputs_embeds): | |
| """ | |
| We are provided embeddings directly. We cannot infer which are padded so just generate sequential position ids. | |
| Args: | |
| inputs_embeds: torch.Tensor | |
| Returns: torch.Tensor | |
| """ | |
| input_shape = inputs_embeds.size()[:-1] | |
| sequence_length = input_shape[1] | |
| position_ids = torch.arange( | |
| self.padding_idx + 1, sequence_length + self.padding_idx + 1, dtype=torch.long, device=inputs_embeds.device | |
| ) | |
| return position_ids.unsqueeze(0).expand(input_shape) | |
| # Copied from transformers.models.bert.modeling_bert.BertSelfAttention with Bert->Roberta | |
| class RobertaSelfAttention(nn.Module): | |
| def __init__(self, config, position_embedding_type=None): | |
| super().__init__() | |
| if config.hidden_size % config.num_attention_heads != 0 and not hasattr(config, "embedding_size"): | |
| raise ValueError( | |
| f"The hidden size ({config.hidden_size}) is not a multiple of the number of attention " | |
| f"heads ({config.num_attention_heads})" | |
| ) | |
| self.num_attention_heads = config.num_attention_heads | |
| self.attention_head_size = int(config.hidden_size / config.num_attention_heads) | |
| self.all_head_size = self.num_attention_heads * self.attention_head_size | |
| self.query = nn.Linear(config.hidden_size, self.all_head_size) | |
| self.key = nn.Linear(config.hidden_size, self.all_head_size) | |
| self.value = nn.Linear(config.hidden_size, self.all_head_size) | |
| self.dropout = nn.Dropout(config.attention_probs_dropout_prob) | |
| self.position_embedding_type = position_embedding_type or getattr( | |
| config, "position_embedding_type", "absolute" | |
| ) | |
| if self.position_embedding_type == "relative_key" or self.position_embedding_type == "relative_key_query": | |
| self.max_position_embeddings = config.max_position_embeddings | |
| self.distance_embedding = nn.Embedding(2 * config.max_position_embeddings - 1, self.attention_head_size) | |
| self.is_decoder = config.is_decoder | |
| def get_attn(self): | |
| return self.attn | |
| def save_attn(self, attn): | |
| self.attn = attn | |
| def save_attn_cam(self, cam): | |
| self.attn_cam = cam | |
| def get_attn_cam(self): | |
| return self.attn_cam | |
| def save_attn_gradients(self, attn_gradients): | |
| self.attn_gradients = attn_gradients | |
| def get_attn_gradients(self): | |
| return self.attn_gradients | |
| def transpose_for_scores(self, x: torch.Tensor) -> torch.Tensor: | |
| new_x_shape = x.size()[:-1] + (self.num_attention_heads, self.attention_head_size) | |
| x = x.view(new_x_shape) | |
| return x.permute(0, 2, 1, 3) | |
| def forward( | |
| self, | |
| hidden_states: torch.Tensor, | |
| attention_mask: Optional[torch.FloatTensor] = None, | |
| head_mask: Optional[torch.FloatTensor] = None, | |
| encoder_hidden_states: Optional[torch.FloatTensor] = None, | |
| encoder_attention_mask: Optional[torch.FloatTensor] = None, | |
| past_key_value: Optional[Tuple[Tuple[torch.FloatTensor]]] = None, | |
| output_attentions: Optional[bool] = False, | |
| ) -> Tuple[torch.Tensor]: | |
| mixed_query_layer = self.query(hidden_states) | |
| # If this is instantiated as a cross-attention module, the keys | |
| # and values come from an encoder; the attention mask needs to be | |
| # such that the encoder's padding tokens are not attended to. | |
| is_cross_attention = encoder_hidden_states is not None | |
| if is_cross_attention and past_key_value is not None: | |
| # reuse k,v, cross_attentions | |
| key_layer = past_key_value[0] | |
| value_layer = past_key_value[1] | |
| attention_mask = encoder_attention_mask | |
| elif is_cross_attention: | |
| key_layer = self.transpose_for_scores(self.key(encoder_hidden_states)) | |
| value_layer = self.transpose_for_scores(self.value(encoder_hidden_states)) | |
| attention_mask = encoder_attention_mask | |
| elif past_key_value is not None: | |
| key_layer = self.transpose_for_scores(self.key(hidden_states)) | |
| value_layer = self.transpose_for_scores(self.value(hidden_states)) | |
| key_layer = torch.cat([past_key_value[0], key_layer], dim=2) | |
| value_layer = torch.cat([past_key_value[1], value_layer], dim=2) | |
| else: | |
| key_layer = self.transpose_for_scores(self.key(hidden_states)) | |
| value_layer = self.transpose_for_scores(self.value(hidden_states)) | |
| query_layer = self.transpose_for_scores(mixed_query_layer) | |
| if self.is_decoder: | |
| # if cross_attention save Tuple(torch.Tensor, torch.Tensor) of all cross attention key/value_states. | |
| # Further calls to cross_attention layer can then reuse all cross-attention | |
| # key/value_states (first "if" case) | |
| # if uni-directional self-attention (decoder) save Tuple(torch.Tensor, torch.Tensor) of | |
| # all previous decoder key/value_states. Further calls to uni-directional self-attention | |
| # can concat previous decoder key/value_states to current projected key/value_states (third "elif" case) | |
| # if encoder bi-directional self-attention `past_key_value` is always `None` | |
| past_key_value = (key_layer, value_layer) | |
| # Take the dot product between "query" and "key" to get the raw attention scores. | |
| attention_scores = torch.matmul(query_layer, key_layer.transpose(-1, -2)) | |
| if self.position_embedding_type == "relative_key" or self.position_embedding_type == "relative_key_query": | |
| seq_length = hidden_states.size()[1] | |
| position_ids_l = torch.arange(seq_length, dtype=torch.long, device=hidden_states.device).view(-1, 1) | |
| position_ids_r = torch.arange(seq_length, dtype=torch.long, device=hidden_states.device).view(1, -1) | |
| distance = position_ids_l - position_ids_r | |
| positional_embedding = self.distance_embedding(distance + self.max_position_embeddings - 1) | |
| positional_embedding = positional_embedding.to(dtype=query_layer.dtype) # fp16 compatibility | |
| if self.position_embedding_type == "relative_key": | |
| relative_position_scores = torch.einsum("bhld,lrd->bhlr", query_layer, positional_embedding) | |
| attention_scores = attention_scores + relative_position_scores | |
| elif self.position_embedding_type == "relative_key_query": | |
| relative_position_scores_query = torch.einsum("bhld,lrd->bhlr", query_layer, positional_embedding) | |
| relative_position_scores_key = torch.einsum("bhrd,lrd->bhlr", key_layer, positional_embedding) | |
| attention_scores = attention_scores + relative_position_scores_query + relative_position_scores_key | |
| attention_scores = attention_scores / math.sqrt(self.attention_head_size) | |
| if attention_mask is not None: | |
| # Apply the attention mask is (precomputed for all layers in RobertaModel forward() function) | |
| attention_scores = attention_scores + attention_mask | |
| # Normalize the attention scores to probabilities. | |
| attention_probs = nn.functional.softmax(attention_scores, dim=-1) | |
| self.save_attn(attention_probs) | |
| attention_probs.register_hook(self.save_attn_gradients) | |
| # This is actually dropping out entire tokens to attend to, which might | |
| # seem a bit unusual, but is taken from the original Transformer paper. | |
| attention_probs = self.dropout(attention_probs) | |
| # Mask heads if we want to | |
| if head_mask is not None: | |
| attention_probs = attention_probs * head_mask | |
| context_layer = torch.matmul(attention_probs, value_layer) | |
| context_layer = context_layer.permute(0, 2, 1, 3).contiguous() | |
| new_context_layer_shape = context_layer.size()[:-2] + (self.all_head_size,) | |
| context_layer = context_layer.view(new_context_layer_shape) | |
| outputs = (context_layer, attention_probs) if output_attentions else (context_layer,) | |
| if self.is_decoder: | |
| outputs = outputs + (past_key_value,) | |
| return outputs | |
| # Copied from transformers.models.bert.modeling_bert.BertSelfOutput | |
| class RobertaSelfOutput(nn.Module): | |
| def __init__(self, config): | |
| super().__init__() | |
| self.dense = nn.Linear(config.hidden_size, config.hidden_size) | |
| self.LayerNorm = nn.LayerNorm(config.hidden_size, eps=config.layer_norm_eps) | |
| self.dropout = nn.Dropout(config.hidden_dropout_prob) | |
| def forward(self, hidden_states: torch.Tensor, input_tensor: torch.Tensor) -> torch.Tensor: | |
| hidden_states = self.dense(hidden_states) | |
| hidden_states = self.dropout(hidden_states) | |
| hidden_states = self.LayerNorm(hidden_states + input_tensor) | |
| return hidden_states | |
| # Copied from transformers.models.bert.modeling_bert.BertAttention with Bert->Roberta | |
| class RobertaAttention(nn.Module): | |
| def __init__(self, config, position_embedding_type=None): | |
| super().__init__() | |
| self.self = RobertaSelfAttention(config, position_embedding_type=position_embedding_type) | |
| self.output = RobertaSelfOutput(config) | |
| self.pruned_heads = set() | |
| def prune_heads(self, heads): | |
| if len(heads) == 0: | |
| return | |
| heads, index = find_pruneable_heads_and_indices( | |
| heads, self.self.num_attention_heads, self.self.attention_head_size, self.pruned_heads | |
| ) | |
| # Prune linear layers | |
| self.self.query = prune_linear_layer(self.self.query, index) | |
| self.self.key = prune_linear_layer(self.self.key, index) | |
| self.self.value = prune_linear_layer(self.self.value, index) | |
| self.output.dense = prune_linear_layer(self.output.dense, index, dim=1) | |
| # Update hyper params and store pruned heads | |
| self.self.num_attention_heads = self.self.num_attention_heads - len(heads) | |
| self.self.all_head_size = self.self.attention_head_size * self.self.num_attention_heads | |
| self.pruned_heads = self.pruned_heads.union(heads) | |
| def forward( | |
| self, | |
| hidden_states: torch.Tensor, | |
| attention_mask: Optional[torch.FloatTensor] = None, | |
| head_mask: Optional[torch.FloatTensor] = None, | |
| encoder_hidden_states: Optional[torch.FloatTensor] = None, | |
| encoder_attention_mask: Optional[torch.FloatTensor] = None, | |
| past_key_value: Optional[Tuple[Tuple[torch.FloatTensor]]] = None, | |
| output_attentions: Optional[bool] = False, | |
| ) -> Tuple[torch.Tensor]: | |
| self_outputs = self.self( | |
| hidden_states, | |
| attention_mask, | |
| head_mask, | |
| encoder_hidden_states, | |
| encoder_attention_mask, | |
| past_key_value, | |
| output_attentions, | |
| ) | |
| attention_output = self.output(self_outputs[0], hidden_states) | |
| outputs = (attention_output,) + self_outputs[1:] # add attentions if we output them | |
| return outputs | |
| # Copied from transformers.models.bert.modeling_bert.BertIntermediate | |
| class RobertaIntermediate(nn.Module): | |
| def __init__(self, config): | |
| super().__init__() | |
| self.dense = nn.Linear(config.hidden_size, config.intermediate_size) | |
| if isinstance(config.hidden_act, str): | |
| self.intermediate_act_fn = ACT2FN[config.hidden_act] | |
| else: | |
| self.intermediate_act_fn = config.hidden_act | |
| def forward(self, hidden_states: torch.Tensor) -> torch.Tensor: | |
| hidden_states = self.dense(hidden_states) | |
| hidden_states = self.intermediate_act_fn(hidden_states) | |
| return hidden_states | |
| # Copied from transformers.models.bert.modeling_bert.BertOutput | |
| class RobertaOutput(nn.Module): | |
| def __init__(self, config): | |
| super().__init__() | |
| self.dense = nn.Linear(config.intermediate_size, config.hidden_size) | |
| self.LayerNorm = nn.LayerNorm(config.hidden_size, eps=config.layer_norm_eps) | |
| self.dropout = nn.Dropout(config.hidden_dropout_prob) | |
| def forward(self, hidden_states: torch.Tensor, input_tensor: torch.Tensor) -> torch.Tensor: | |
| hidden_states = self.dense(hidden_states) | |
| hidden_states = self.dropout(hidden_states) | |
| hidden_states = self.LayerNorm(hidden_states + input_tensor) | |
| return hidden_states | |
| # Copied from transformers.models.bert.modeling_bert.BertLayer with Bert->Roberta | |
| class RobertaLayer(nn.Module): | |
| def __init__(self, config): | |
| super().__init__() | |
| self.chunk_size_feed_forward = config.chunk_size_feed_forward | |
| self.seq_len_dim = 1 | |
| self.attention = RobertaAttention(config) | |
| self.is_decoder = config.is_decoder | |
| self.add_cross_attention = config.add_cross_attention | |
| if self.add_cross_attention: | |
| if not self.is_decoder: | |
| raise ValueError(f"{self} should be used as a decoder model if cross attention is added") | |
| self.crossattention = RobertaAttention(config, position_embedding_type="absolute") | |
| self.intermediate = RobertaIntermediate(config) | |
| self.output = RobertaOutput(config) | |
| def forward( | |
| self, | |
| hidden_states: torch.Tensor, | |
| attention_mask: Optional[torch.FloatTensor] = None, | |
| head_mask: Optional[torch.FloatTensor] = None, | |
| encoder_hidden_states: Optional[torch.FloatTensor] = None, | |
| encoder_attention_mask: Optional[torch.FloatTensor] = None, | |
| past_key_value: Optional[Tuple[Tuple[torch.FloatTensor]]] = None, | |
| output_attentions: Optional[bool] = False, | |
| ) -> Tuple[torch.Tensor]: | |
| # decoder uni-directional self-attention cached key/values tuple is at positions 1,2 | |
| self_attn_past_key_value = past_key_value[:2] if past_key_value is not None else None | |
| self_attention_outputs = self.attention( | |
| hidden_states, | |
| attention_mask, | |
| head_mask, | |
| output_attentions=output_attentions, | |
| past_key_value=self_attn_past_key_value, | |
| ) | |
| attention_output = self_attention_outputs[0] | |
| # if decoder, the last output is tuple of self-attn cache | |
| if self.is_decoder: | |
| outputs = self_attention_outputs[1:-1] | |
| present_key_value = self_attention_outputs[-1] | |
| else: | |
| outputs = self_attention_outputs[1:] # add self attentions if we output attention weights | |
| cross_attn_present_key_value = None | |
| if self.is_decoder and encoder_hidden_states is not None: | |
| if not hasattr(self, "crossattention"): | |
| raise ValueError( | |
| f"If `encoder_hidden_states` are passed, {self} has to be instantiated with cross-attention layers" | |
| " by setting `config.add_cross_attention=True`" | |
| ) | |
| # cross_attn cached key/values tuple is at positions 3,4 of past_key_value tuple | |
| cross_attn_past_key_value = past_key_value[-2:] if past_key_value is not None else None | |
| cross_attention_outputs = self.crossattention( | |
| attention_output, | |
| attention_mask, | |
| head_mask, | |
| encoder_hidden_states, | |
| encoder_attention_mask, | |
| cross_attn_past_key_value, | |
| output_attentions, | |
| ) | |
| attention_output = cross_attention_outputs[0] | |
| outputs = outputs + cross_attention_outputs[1:-1] # add cross attentions if we output attention weights | |
| # add cross-attn cache to positions 3,4 of present_key_value tuple | |
| cross_attn_present_key_value = cross_attention_outputs[-1] | |
| present_key_value = present_key_value + cross_attn_present_key_value | |
| layer_output = apply_chunking_to_forward( | |
| self.feed_forward_chunk, self.chunk_size_feed_forward, self.seq_len_dim, attention_output | |
| ) | |
| outputs = (layer_output,) + outputs | |
| # if decoder, return the attn key/values as the last output | |
| if self.is_decoder: | |
| outputs = outputs + (present_key_value,) | |
| return outputs | |
| def feed_forward_chunk(self, attention_output): | |
| intermediate_output = self.intermediate(attention_output) | |
| layer_output = self.output(intermediate_output, attention_output) | |
| return layer_output | |
| # Copied from transformers.models.bert.modeling_bert.BertEncoder with Bert->Roberta | |
| class RobertaEncoder(nn.Module): | |
| def __init__(self, config): | |
| super().__init__() | |
| self.config = config | |
| self.layer = nn.ModuleList([RobertaLayer(config) for _ in range(config.num_hidden_layers)]) | |
| self.gradient_checkpointing = False | |
| def forward( | |
| self, | |
| hidden_states: torch.Tensor, | |
| attention_mask: Optional[torch.FloatTensor] = None, | |
| head_mask: Optional[torch.FloatTensor] = None, | |
| encoder_hidden_states: Optional[torch.FloatTensor] = None, | |
| encoder_attention_mask: Optional[torch.FloatTensor] = None, | |
| past_key_values: Optional[Tuple[Tuple[torch.FloatTensor]]] = None, | |
| use_cache: Optional[bool] = None, | |
| output_attentions: Optional[bool] = False, | |
| output_hidden_states: Optional[bool] = False, | |
| return_dict: Optional[bool] = True, | |
| ) -> Union[Tuple[torch.Tensor], BaseModelOutputWithPastAndCrossAttentions]: | |
| all_hidden_states = () if output_hidden_states else None | |
| all_self_attentions = () if output_attentions else None | |
| all_cross_attentions = () if output_attentions and self.config.add_cross_attention else None | |
| next_decoder_cache = () if use_cache else None | |
| for i, layer_module in enumerate(self.layer): | |
| if output_hidden_states: | |
| all_hidden_states = all_hidden_states + (hidden_states,) | |
| layer_head_mask = head_mask[i] if head_mask is not None else None | |
| past_key_value = past_key_values[i] if past_key_values is not None else None | |
| if self.gradient_checkpointing and self.training: | |
| if use_cache: | |
| logger.warning( | |
| "`use_cache=True` is incompatible with gradient checkpointing. Setting `use_cache=False`..." | |
| ) | |
| use_cache = False | |
| def create_custom_forward(module): | |
| def custom_forward(*inputs): | |
| return module(*inputs, past_key_value, output_attentions) | |
| return custom_forward | |
| layer_outputs = torch.utils.checkpoint.checkpoint( | |
| create_custom_forward(layer_module), | |
| hidden_states, | |
| attention_mask, | |
| layer_head_mask, | |
| encoder_hidden_states, | |
| encoder_attention_mask, | |
| ) | |
| else: | |
| layer_outputs = layer_module( | |
| hidden_states, | |
| attention_mask, | |
| layer_head_mask, | |
| encoder_hidden_states, | |
| encoder_attention_mask, | |
| past_key_value, | |
| output_attentions, | |
| ) | |
| hidden_states = layer_outputs[0] | |
| if use_cache: | |
| next_decoder_cache += (layer_outputs[-1],) | |
| if output_attentions: | |
| all_self_attentions = all_self_attentions + (layer_outputs[1],) | |
| if self.config.add_cross_attention: | |
| all_cross_attentions = all_cross_attentions + (layer_outputs[2],) | |
| if output_hidden_states: | |
| all_hidden_states = all_hidden_states + (hidden_states,) | |
| if not return_dict: | |
| return tuple( | |
| v | |
| for v in [ | |
| hidden_states, | |
| next_decoder_cache, | |
| all_hidden_states, | |
| all_self_attentions, | |
| all_cross_attentions, | |
| ] | |
| if v is not None | |
| ) | |
| return BaseModelOutputWithPastAndCrossAttentions( | |
| last_hidden_state=hidden_states, | |
| past_key_values=next_decoder_cache, | |
| hidden_states=all_hidden_states, | |
| attentions=all_self_attentions, | |
| cross_attentions=all_cross_attentions, | |
| ) | |
| # Copied from transformers.models.bert.modeling_bert.BertPooler | |
| class RobertaPooler(nn.Module): | |
| def __init__(self, config): | |
| super().__init__() | |
| self.dense = nn.Linear(config.hidden_size, config.hidden_size) | |
| self.activation = nn.Tanh() | |
| def forward(self, hidden_states: torch.Tensor) -> torch.Tensor: | |
| # We "pool" the model by simply taking the hidden state corresponding | |
| # to the first token. | |
| first_token_tensor = hidden_states[:, 0] | |
| pooled_output = self.dense(first_token_tensor) | |
| pooled_output = self.activation(pooled_output) | |
| return pooled_output | |
| class RobertaPreTrainedModel(PreTrainedModel): | |
| """ | |
| An abstract class to handle weights initialization and a simple interface for downloading and loading pretrained | |
| models. | |
| """ | |
| config_class = RobertaConfig | |
| base_model_prefix = "roberta" | |
| supports_gradient_checkpointing = True | |
| # Copied from transformers.models.bert.modeling_bert.BertPreTrainedModel._init_weights | |
| def _init_weights(self, module): | |
| """Initialize the weights""" | |
| if isinstance(module, nn.Linear): | |
| # Slightly different from the TF version which uses truncated_normal for initialization | |
| # cf https://github.com/pytorch/pytorch/pull/5617 | |
| module.weight.data.normal_(mean=0.0, std=self.config.initializer_range) | |
| if module.bias is not None: | |
| module.bias.data.zero_() | |
| elif isinstance(module, nn.Embedding): | |
| module.weight.data.normal_(mean=0.0, std=self.config.initializer_range) | |
| if module.padding_idx is not None: | |
| module.weight.data[module.padding_idx].zero_() | |
| elif isinstance(module, nn.LayerNorm): | |
| module.bias.data.zero_() | |
| module.weight.data.fill_(1.0) | |
| def _set_gradient_checkpointing(self, module, value=False): | |
| if isinstance(module, RobertaEncoder): | |
| module.gradient_checkpointing = value | |
| def update_keys_to_ignore(self, config, del_keys_to_ignore): | |
| """Remove some keys from ignore list""" | |
| if not config.tie_word_embeddings: | |
| # must make a new list, or the class variable gets modified! | |
| self._keys_to_ignore_on_save = [k for k in self._keys_to_ignore_on_save if k not in del_keys_to_ignore] | |
| self._keys_to_ignore_on_load_missing = [ | |
| k for k in self._keys_to_ignore_on_load_missing if k not in del_keys_to_ignore | |
| ] | |
| ROBERTA_START_DOCSTRING = r""" | |
| This model inherits from [`PreTrainedModel`]. Check the superclass documentation for the generic methods the | |
| library implements for all its model (such as downloading or saving, resizing the input embeddings, pruning heads | |
| etc.) | |
| This model is also a PyTorch [torch.nn.Module](https://pytorch.org/docs/stable/nn.html#torch.nn.Module) subclass. | |
| Use it as a regular PyTorch Module and refer to the PyTorch documentation for all matter related to general usage | |
| and behavior. | |
| Parameters: | |
| config ([`RobertaConfig`]): Model configuration class with all the parameters of the | |
| model. Initializing with a config file does not load the weights associated with the model, only the | |
| configuration. Check out the [`~PreTrainedModel.from_pretrained`] method to load the model weights. | |
| """ | |
| ROBERTA_INPUTS_DOCSTRING = r""" | |
| Args: | |
| input_ids (`torch.LongTensor` of shape `({0})`): | |
| Indices of input sequence tokens in the vocabulary. | |
| Indices can be obtained using [`RobertaTokenizer`]. See [`PreTrainedTokenizer.encode`] and | |
| [`PreTrainedTokenizer.__call__`] for details. | |
| [What are input IDs?](../glossary#input-ids) | |
| attention_mask (`torch.FloatTensor` of shape `({0})`, *optional*): | |
| Mask to avoid performing attention on padding token indices. Mask values selected in `[0, 1]`: | |
| - 1 for tokens that are **not masked**, | |
| - 0 for tokens that are **masked**. | |
| [What are attention masks?](../glossary#attention-mask) | |
| token_type_ids (`torch.LongTensor` of shape `({0})`, *optional*): | |
| Segment token indices to indicate first and second portions of the inputs. Indices are selected in `[0, | |
| 1]`: | |
| - 0 corresponds to a *sentence A* token, | |
| - 1 corresponds to a *sentence B* token. | |
| [What are token type IDs?](../glossary#token-type-ids) | |
| position_ids (`torch.LongTensor` of shape `({0})`, *optional*): | |
| Indices of positions of each input sequence tokens in the position embeddings. Selected in the range `[0, | |
| config.max_position_embeddings - 1]`. | |
| [What are position IDs?](../glossary#position-ids) | |
| head_mask (`torch.FloatTensor` of shape `(num_heads,)` or `(num_layers, num_heads)`, *optional*): | |
| Mask to nullify selected heads of the self-attention modules. Mask values selected in `[0, 1]`: | |
| - 1 indicates the head is **not masked**, | |
| - 0 indicates the head is **masked**. | |
| inputs_embeds (`torch.FloatTensor` of shape `({0}, hidden_size)`, *optional*): | |
| Optionally, instead of passing `input_ids` you can choose to directly pass an embedded representation. This | |
| is useful if you want more control over how to convert `input_ids` indices into associated vectors than the | |
| model's internal embedding lookup matrix. | |
| output_attentions (`bool`, *optional*): | |
| Whether or not to return the attentions tensors of all attention layers. See `attentions` under returned | |
| tensors for more detail. | |
| output_hidden_states (`bool`, *optional*): | |
| Whether or not to return the hidden states of all layers. See `hidden_states` under returned tensors for | |
| more detail. | |
| return_dict (`bool`, *optional*): | |
| Whether or not to return a [`~utils.ModelOutput`] instead of a plain tuple. | |
| """ | |
| class RobertaModel(RobertaPreTrainedModel): | |
| """ | |
| The model can behave as an encoder (with only self-attention) as well as a decoder, in which case a layer of | |
| cross-attention is added between the self-attention layers, following the architecture described in *Attention is | |
| all you need*_ by Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob Uszkoreit, Llion Jones, Aidan N. Gomez, Lukasz | |
| Kaiser and Illia Polosukhin. | |
| To behave as an decoder the model needs to be initialized with the `is_decoder` argument of the configuration set | |
| to `True`. To be used in a Seq2Seq model, the model needs to initialized with both `is_decoder` argument and | |
| `add_cross_attention` set to `True`; an `encoder_hidden_states` is then expected as an input to the forward pass. | |
| .. _*Attention is all you need*: https://arxiv.org/abs/1706.03762 | |
| """ | |
| _keys_to_ignore_on_load_missing = [r"position_ids"] | |
| # Copied from transformers.models.bert.modeling_bert.BertModel.__init__ with Bert->Roberta | |
| def __init__(self, config, add_pooling_layer=True): | |
| super().__init__(config) | |
| self.config = config | |
| self.embeddings = RobertaEmbeddings(config) | |
| self.encoder = RobertaEncoder(config) | |
| self.pooler = RobertaPooler(config) if add_pooling_layer else None | |
| # Initialize weights and apply final processing | |
| self.post_init() | |
| def get_input_embeddings(self): | |
| return self.embeddings.word_embeddings | |
| def set_input_embeddings(self, value): | |
| self.embeddings.word_embeddings = value | |
| def _prune_heads(self, heads_to_prune): | |
| """ | |
| Prunes heads of the model. heads_to_prune: dict of {layer_num: list of heads to prune in this layer} See base | |
| class PreTrainedModel | |
| """ | |
| for layer, heads in heads_to_prune.items(): | |
| self.encoder.layer[layer].attention.prune_heads(heads) | |
| # Copied from transformers.models.bert.modeling_bert.BertModel.forward | |
| def forward( | |
| self, | |
| input_ids: Optional[torch.Tensor] = None, | |
| attention_mask: Optional[torch.Tensor] = None, | |
| token_type_ids: Optional[torch.Tensor] = None, | |
| position_ids: Optional[torch.Tensor] = None, | |
| head_mask: Optional[torch.Tensor] = None, | |
| inputs_embeds: Optional[torch.Tensor] = None, | |
| encoder_hidden_states: Optional[torch.Tensor] = None, | |
| encoder_attention_mask: Optional[torch.Tensor] = None, | |
| past_key_values: Optional[List[torch.FloatTensor]] = None, | |
| use_cache: Optional[bool] = None, | |
| output_attentions: Optional[bool] = None, | |
| output_hidden_states: Optional[bool] = None, | |
| return_dict: Optional[bool] = None, | |
| ) -> Union[Tuple[torch.Tensor], BaseModelOutputWithPoolingAndCrossAttentions]: | |
| r""" | |
| encoder_hidden_states (`torch.FloatTensor` of shape `(batch_size, sequence_length, hidden_size)`, *optional*): | |
| Sequence of hidden-states at the output of the last layer of the encoder. Used in the cross-attention if | |
| the model is configured as a decoder. | |
| encoder_attention_mask (`torch.FloatTensor` of shape `(batch_size, sequence_length)`, *optional*): | |
| Mask to avoid performing attention on the padding token indices of the encoder input. This mask is used in | |
| the cross-attention if the model is configured as a decoder. Mask values selected in `[0, 1]`: | |
| - 1 for tokens that are **not masked**, | |
| - 0 for tokens that are **masked**. | |
| past_key_values (`tuple(tuple(torch.FloatTensor))` of length `config.n_layers` with each tuple having 4 tensors of shape `(batch_size, num_heads, sequence_length - 1, embed_size_per_head)`): | |
| Contains precomputed key and value hidden states of the attention blocks. Can be used to speed up decoding. | |
| If `past_key_values` are used, the user can optionally input only the last `decoder_input_ids` (those that | |
| don't have their past key value states given to this model) of shape `(batch_size, 1)` instead of all | |
| `decoder_input_ids` of shape `(batch_size, sequence_length)`. | |
| use_cache (`bool`, *optional*): | |
| If set to `True`, `past_key_values` key value states are returned and can be used to speed up decoding (see | |
| `past_key_values`). | |
| """ | |
| output_attentions = output_attentions if output_attentions is not None else self.config.output_attentions | |
| output_hidden_states = ( | |
| output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states | |
| ) | |
| return_dict = return_dict if return_dict is not None else self.config.use_return_dict | |
| if self.config.is_decoder: | |
| use_cache = use_cache if use_cache is not None else self.config.use_cache | |
| else: | |
| use_cache = False | |
| if input_ids is not None and inputs_embeds is not None: | |
| raise ValueError("You cannot specify both input_ids and inputs_embeds at the same time") | |
| elif input_ids is not None: | |
| input_shape = input_ids.size() | |
| elif inputs_embeds is not None: | |
| input_shape = inputs_embeds.size()[:-1] | |
| else: | |
| raise ValueError("You have to specify either input_ids or inputs_embeds") | |
| batch_size, seq_length = input_shape | |
| device = input_ids.device if input_ids is not None else inputs_embeds.device | |
| # past_key_values_length | |
| past_key_values_length = past_key_values[0][0].shape[2] if past_key_values is not None else 0 | |
| if attention_mask is None: | |
| attention_mask = torch.ones(((batch_size, seq_length + past_key_values_length)), device=device) | |
| if token_type_ids is None: | |
| if hasattr(self.embeddings, "token_type_ids"): | |
| buffered_token_type_ids = self.embeddings.token_type_ids[:, :seq_length] | |
| buffered_token_type_ids_expanded = buffered_token_type_ids.expand(batch_size, seq_length) | |
| token_type_ids = buffered_token_type_ids_expanded | |
| else: | |
| token_type_ids = torch.zeros(input_shape, dtype=torch.long, device=device) | |
| # We can provide a self-attention mask of dimensions [batch_size, from_seq_length, to_seq_length] | |
| # ourselves in which case we just need to make it broadcastable to all heads. | |
| extended_attention_mask: torch.Tensor = self.get_extended_attention_mask(attention_mask, input_shape) | |
| # If a 2D or 3D attention mask is provided for the cross-attention | |
| # we need to make broadcastable to [batch_size, num_heads, seq_length, seq_length] | |
| if self.config.is_decoder and encoder_hidden_states is not None: | |
| encoder_batch_size, encoder_sequence_length, _ = encoder_hidden_states.size() | |
| encoder_hidden_shape = (encoder_batch_size, encoder_sequence_length) | |
| if encoder_attention_mask is None: | |
| encoder_attention_mask = torch.ones(encoder_hidden_shape, device=device) | |
| encoder_extended_attention_mask = self.invert_attention_mask(encoder_attention_mask) | |
| else: | |
| encoder_extended_attention_mask = None | |
| # Prepare head mask if needed | |
| # 1.0 in head_mask indicate we keep the head | |
| # attention_probs has shape bsz x n_heads x N x N | |
| # input head_mask has shape [num_heads] or [num_hidden_layers x num_heads] | |
| # and head_mask is converted to shape [num_hidden_layers x batch x num_heads x seq_length x seq_length] | |
| head_mask = self.get_head_mask(head_mask, self.config.num_hidden_layers) | |
| embedding_output = self.embeddings( | |
| input_ids=input_ids, | |
| position_ids=position_ids, | |
| token_type_ids=token_type_ids, | |
| inputs_embeds=inputs_embeds, | |
| past_key_values_length=past_key_values_length, | |
| ) | |
| encoder_outputs = self.encoder( | |
| embedding_output, | |
| attention_mask=extended_attention_mask, | |
| head_mask=head_mask, | |
| encoder_hidden_states=encoder_hidden_states, | |
| encoder_attention_mask=encoder_extended_attention_mask, | |
| past_key_values=past_key_values, | |
| use_cache=use_cache, | |
| output_attentions=output_attentions, | |
| output_hidden_states=output_hidden_states, | |
| return_dict=return_dict, | |
| ) | |
| sequence_output = encoder_outputs[0] | |
| pooled_output = self.pooler(sequence_output) if self.pooler is not None else None | |
| if not return_dict: | |
| return (sequence_output, pooled_output) + encoder_outputs[1:] | |
| return BaseModelOutputWithPoolingAndCrossAttentions( | |
| last_hidden_state=sequence_output, | |
| pooler_output=pooled_output, | |
| past_key_values=encoder_outputs.past_key_values, | |
| hidden_states=encoder_outputs.hidden_states, | |
| attentions=encoder_outputs.attentions, | |
| cross_attentions=encoder_outputs.cross_attentions, | |
| ) | |
| class RobertaForCausalLM(RobertaPreTrainedModel): | |
| _keys_to_ignore_on_save = [r"lm_head.decoder.weight", r"lm_head.decoder.bias"] | |
| _keys_to_ignore_on_load_missing = [r"position_ids", r"lm_head.decoder.weight", r"lm_head.decoder.bias"] | |
| _keys_to_ignore_on_load_unexpected = [r"pooler"] | |
| def __init__(self, config): | |
| super().__init__(config) | |
| if not config.is_decoder: | |
| logger.warning("If you want to use `RobertaLMHeadModel` as a standalone, add `is_decoder=True.`") | |
| self.roberta = RobertaModel(config, add_pooling_layer=False) | |
| self.lm_head = RobertaLMHead(config) | |
| # The LM head weights require special treatment only when they are tied with the word embeddings | |
| self.update_keys_to_ignore(config, ["lm_head.decoder.weight"]) | |
| # Initialize weights and apply final processing | |
| self.post_init() | |
| def get_output_embeddings(self): | |
| return self.lm_head.decoder | |
| def set_output_embeddings(self, new_embeddings): | |
| self.lm_head.decoder = new_embeddings | |
| def forward( | |
| self, | |
| input_ids: Optional[torch.LongTensor] = None, | |
| attention_mask: Optional[torch.FloatTensor] = None, | |
| token_type_ids: Optional[torch.LongTensor] = None, | |
| position_ids: Optional[torch.LongTensor] = None, | |
| head_mask: Optional[torch.FloatTensor] = None, | |
| inputs_embeds: Optional[torch.FloatTensor] = None, | |
| encoder_hidden_states: Optional[torch.FloatTensor] = None, | |
| encoder_attention_mask: Optional[torch.FloatTensor] = None, | |
| labels: Optional[torch.LongTensor] = None, | |
| past_key_values: Tuple[Tuple[torch.FloatTensor]] = None, | |
| use_cache: Optional[bool] = None, | |
| output_attentions: Optional[bool] = None, | |
| output_hidden_states: Optional[bool] = None, | |
| return_dict: Optional[bool] = None, | |
| ) -> Union[Tuple[torch.Tensor], CausalLMOutputWithCrossAttentions]: | |
| r""" | |
| encoder_hidden_states (`torch.FloatTensor` of shape `(batch_size, sequence_length, hidden_size)`, *optional*): | |
| Sequence of hidden-states at the output of the last layer of the encoder. Used in the cross-attention if | |
| the model is configured as a decoder. | |
| encoder_attention_mask (`torch.FloatTensor` of shape `(batch_size, sequence_length)`, *optional*): | |
| Mask to avoid performing attention on the padding token indices of the encoder input. This mask is used in | |
| the cross-attention if the model is configured as a decoder. Mask values selected in `[0, 1]`: | |
| - 1 for tokens that are **not masked**, | |
| - 0 for tokens that are **masked**. | |
| labels (`torch.LongTensor` of shape `(batch_size, sequence_length)`, *optional*): | |
| Labels for computing the left-to-right language modeling loss (next word prediction). Indices should be in | |
| `[-100, 0, ..., config.vocab_size]` (see `input_ids` docstring) Tokens with indices set to `-100` are | |
| ignored (masked), the loss is only computed for the tokens with labels in `[0, ..., config.vocab_size]` | |
| past_key_values (`tuple(tuple(torch.FloatTensor))` of length `config.n_layers` with each tuple having 4 tensors of shape `(batch_size, num_heads, sequence_length - 1, embed_size_per_head)`): | |
| Contains precomputed key and value hidden states of the attention blocks. Can be used to speed up decoding. | |
| If `past_key_values` are used, the user can optionally input only the last `decoder_input_ids` (those that | |
| don't have their past key value states given to this model) of shape `(batch_size, 1)` instead of all | |
| `decoder_input_ids` of shape `(batch_size, sequence_length)`. | |
| use_cache (`bool`, *optional*): | |
| If set to `True`, `past_key_values` key value states are returned and can be used to speed up decoding (see | |
| `past_key_values`). | |
| Returns: | |
| Example: | |
| ```python | |
| >>> from transformers import RobertaTokenizer, RobertaForCausalLM, RobertaConfig | |
| >>> import torch | |
| >>> tokenizer = RobertaTokenizer.from_pretrained("roberta-base") | |
| >>> config = RobertaConfig.from_pretrained("roberta-base") | |
| >>> config.is_decoder = True | |
| >>> model = RobertaForCausalLM.from_pretrained("roberta-base", config=config) | |
| >>> inputs = tokenizer("Hello, my dog is cute", return_tensors="pt") | |
| >>> outputs = model(**inputs) | |
| >>> prediction_logits = outputs.logits | |
| ```""" | |
| return_dict = return_dict if return_dict is not None else self.config.use_return_dict | |
| if labels is not None: | |
| use_cache = False | |
| outputs = self.roberta( | |
| input_ids, | |
| attention_mask=attention_mask, | |
| token_type_ids=token_type_ids, | |
| position_ids=position_ids, | |
| head_mask=head_mask, | |
| inputs_embeds=inputs_embeds, | |
| encoder_hidden_states=encoder_hidden_states, | |
| encoder_attention_mask=encoder_attention_mask, | |
| past_key_values=past_key_values, | |
| use_cache=use_cache, | |
| output_attentions=output_attentions, | |
| output_hidden_states=output_hidden_states, | |
| return_dict=return_dict, | |
| ) | |
| sequence_output = outputs[0] | |
| prediction_scores = self.lm_head(sequence_output) | |
| lm_loss = None | |
| if labels is not None: | |
| # we are doing next-token prediction; shift prediction scores and input ids by one | |
| shifted_prediction_scores = prediction_scores[:, :-1, :].contiguous() | |
| labels = labels[:, 1:].contiguous() | |
| loss_fct = CrossEntropyLoss() | |
| lm_loss = loss_fct(shifted_prediction_scores.view(-1, self.config.vocab_size), labels.view(-1)) | |
| if not return_dict: | |
| output = (prediction_scores,) + outputs[2:] | |
| return ((lm_loss,) + output) if lm_loss is not None else output | |
| return CausalLMOutputWithCrossAttentions( | |
| loss=lm_loss, | |
| logits=prediction_scores, | |
| past_key_values=outputs.past_key_values, | |
| hidden_states=outputs.hidden_states, | |
| attentions=outputs.attentions, | |
| cross_attentions=outputs.cross_attentions, | |
| ) | |
| def prepare_inputs_for_generation(self, input_ids, past=None, attention_mask=None, **model_kwargs): | |
| input_shape = input_ids.shape | |
| # if model is used as a decoder in encoder-decoder model, the decoder attention mask is created on the fly | |
| if attention_mask is None: | |
| attention_mask = input_ids.new_ones(input_shape) | |
| # cut decoder_input_ids if past is used | |
| if past is not None: | |
| input_ids = input_ids[:, -1:] | |
| return {"input_ids": input_ids, "attention_mask": attention_mask, "past_key_values": past} | |
| def _reorder_cache(self, past, beam_idx): | |
| reordered_past = () | |
| for layer_past in past: | |
| reordered_past += (tuple(past_state.index_select(0, beam_idx) for past_state in layer_past),) | |
| return reordered_past | |
| class RobertaForMaskedLM(RobertaPreTrainedModel): | |
| _keys_to_ignore_on_save = [r"lm_head.decoder.weight", r"lm_head.decoder.bias"] | |
| _keys_to_ignore_on_load_missing = [r"position_ids", r"lm_head.decoder.weight", r"lm_head.decoder.bias"] | |
| _keys_to_ignore_on_load_unexpected = [r"pooler"] | |
| def __init__(self, config): | |
| super().__init__(config) | |
| if config.is_decoder: | |
| logger.warning( | |
| "If you want to use `RobertaForMaskedLM` make sure `config.is_decoder=False` for " | |
| "bi-directional self-attention." | |
| ) | |
| self.roberta = RobertaModel(config, add_pooling_layer=False) | |
| self.lm_head = RobertaLMHead(config) | |
| # The LM head weights require special treatment only when they are tied with the word embeddings | |
| self.update_keys_to_ignore(config, ["lm_head.decoder.weight"]) | |
| # Initialize weights and apply final processing | |
| self.post_init() | |
| def get_output_embeddings(self): | |
| return self.lm_head.decoder | |
| def set_output_embeddings(self, new_embeddings): | |
| self.lm_head.decoder = new_embeddings | |
| def forward( | |
| self, | |
| input_ids: Optional[torch.LongTensor] = None, | |
| attention_mask: Optional[torch.FloatTensor] = None, | |
| token_type_ids: Optional[torch.LongTensor] = None, | |
| position_ids: Optional[torch.LongTensor] = None, | |
| head_mask: Optional[torch.FloatTensor] = None, | |
| inputs_embeds: Optional[torch.FloatTensor] = None, | |
| encoder_hidden_states: Optional[torch.FloatTensor] = None, | |
| encoder_attention_mask: Optional[torch.FloatTensor] = None, | |
| labels: Optional[torch.LongTensor] = None, | |
| output_attentions: Optional[bool] = None, | |
| output_hidden_states: Optional[bool] = None, | |
| return_dict: Optional[bool] = None, | |
| ) -> Union[Tuple[torch.Tensor], MaskedLMOutput]: | |
| r""" | |
| labels (`torch.LongTensor` of shape `(batch_size, sequence_length)`, *optional*): | |
| Labels for computing the masked language modeling loss. Indices should be in `[-100, 0, ..., | |
| config.vocab_size]` (see `input_ids` docstring) Tokens with indices set to `-100` are ignored (masked), the | |
| loss is only computed for the tokens with labels in `[0, ..., config.vocab_size]` | |
| kwargs (`Dict[str, any]`, optional, defaults to *{}*): | |
| Used to hide legacy arguments that have been deprecated. | |
| """ | |
| return_dict = return_dict if return_dict is not None else self.config.use_return_dict | |
| outputs = self.roberta( | |
| input_ids, | |
| attention_mask=attention_mask, | |
| token_type_ids=token_type_ids, | |
| position_ids=position_ids, | |
| head_mask=head_mask, | |
| inputs_embeds=inputs_embeds, | |
| encoder_hidden_states=encoder_hidden_states, | |
| encoder_attention_mask=encoder_attention_mask, | |
| output_attentions=output_attentions, | |
| output_hidden_states=output_hidden_states, | |
| return_dict=return_dict, | |
| ) | |
| sequence_output = outputs[0] | |
| prediction_scores = self.lm_head(sequence_output) | |
| masked_lm_loss = None | |
| if labels is not None: | |
| loss_fct = CrossEntropyLoss() | |
| masked_lm_loss = loss_fct(prediction_scores.view(-1, self.config.vocab_size), labels.view(-1)) | |
| if not return_dict: | |
| output = (prediction_scores,) + outputs[2:] | |
| return ((masked_lm_loss,) + output) if masked_lm_loss is not None else output | |
| return MaskedLMOutput( | |
| loss=masked_lm_loss, | |
| logits=prediction_scores, | |
| hidden_states=outputs.hidden_states, | |
| attentions=outputs.attentions, | |
| ) | |
| class RobertaLMHead(nn.Module): | |
| """Roberta Head for masked language modeling.""" | |
| def __init__(self, config): | |
| super().__init__() | |
| self.dense = nn.Linear(config.hidden_size, config.hidden_size) | |
| self.layer_norm = nn.LayerNorm(config.hidden_size, eps=config.layer_norm_eps) | |
| self.decoder = nn.Linear(config.hidden_size, config.vocab_size) | |
| self.bias = nn.Parameter(torch.zeros(config.vocab_size)) | |
| self.decoder.bias = self.bias | |
| def forward(self, features, **kwargs): | |
| x = self.dense(features) | |
| x = gelu(x) | |
| x = self.layer_norm(x) | |
| # project back to size of vocabulary with bias | |
| x = self.decoder(x) | |
| return x | |
| def _tie_weights(self): | |
| # To tie those two weights if they get disconnected (on TPU or when the bias is resized) | |
| self.bias = self.decoder.bias | |
| class RobertaForSequenceClassification(RobertaPreTrainedModel): | |
| _keys_to_ignore_on_load_missing = [r"position_ids"] | |
| def __init__(self, config): | |
| super().__init__(config) | |
| self.num_labels = config.num_labels | |
| self.config = config | |
| self.roberta = RobertaModel(config, add_pooling_layer=False) | |
| self.classifier = RobertaClassificationHead(config) | |
| # Initialize weights and apply final processing | |
| self.post_init() | |
| def forward( | |
| self, | |
| input_ids: Optional[torch.LongTensor] = None, | |
| attention_mask: Optional[torch.FloatTensor] = None, | |
| token_type_ids: Optional[torch.LongTensor] = None, | |
| position_ids: Optional[torch.LongTensor] = None, | |
| head_mask: Optional[torch.FloatTensor] = None, | |
| inputs_embeds: Optional[torch.FloatTensor] = None, | |
| labels: Optional[torch.LongTensor] = None, | |
| output_attentions: Optional[bool] = None, | |
| output_hidden_states: Optional[bool] = None, | |
| return_dict: Optional[bool] = None, | |
| ) -> Union[Tuple[torch.Tensor], SequenceClassifierOutput]: | |
| r""" | |
| labels (`torch.LongTensor` of shape `(batch_size,)`, *optional*): | |
| Labels for computing the sequence classification/regression loss. Indices should be in `[0, ..., | |
| config.num_labels - 1]`. If `config.num_labels == 1` a regression loss is computed (Mean-Square loss), If | |
| `config.num_labels > 1` a classification loss is computed (Cross-Entropy). | |
| """ | |
| return_dict = return_dict if return_dict is not None else self.config.use_return_dict | |
| outputs = self.roberta( | |
| input_ids, | |
| attention_mask=attention_mask, | |
| token_type_ids=token_type_ids, | |
| position_ids=position_ids, | |
| head_mask=head_mask, | |
| inputs_embeds=inputs_embeds, | |
| output_attentions=output_attentions, | |
| output_hidden_states=output_hidden_states, | |
| return_dict=return_dict, | |
| ) | |
| sequence_output = outputs[0] | |
| logits = self.classifier(sequence_output) | |
| loss = None | |
| if labels is not None: | |
| if self.config.problem_type is None: | |
| if self.num_labels == 1: | |
| self.config.problem_type = "regression" | |
| elif self.num_labels > 1 and (labels.dtype == torch.long or labels.dtype == torch.int): | |
| self.config.problem_type = "single_label_classification" | |
| else: | |
| self.config.problem_type = "multi_label_classification" | |
| if self.config.problem_type == "regression": | |
| loss_fct = MSELoss() | |
| if self.num_labels == 1: | |
| loss = loss_fct(logits.squeeze(), labels.squeeze()) | |
| else: | |
| loss = loss_fct(logits, labels) | |
| elif self.config.problem_type == "single_label_classification": | |
| loss_fct = CrossEntropyLoss() | |
| loss = loss_fct(logits.view(-1, self.num_labels), labels.view(-1)) | |
| elif self.config.problem_type == "multi_label_classification": | |
| loss_fct = BCEWithLogitsLoss() | |
| loss = loss_fct(logits, labels) | |
| if not return_dict: | |
| output = (logits,) + outputs[2:] | |
| return ((loss,) + output) if loss is not None else output | |
| return SequenceClassifierOutput( | |
| loss=loss, | |
| logits=logits, | |
| hidden_states=outputs.hidden_states, | |
| attentions=outputs.attentions, | |
| ) | |
| class RobertaForMultipleChoice(RobertaPreTrainedModel): | |
| _keys_to_ignore_on_load_missing = [r"position_ids"] | |
| def __init__(self, config): | |
| super().__init__(config) | |
| self.roberta = RobertaModel(config) | |
| self.dropout = nn.Dropout(config.hidden_dropout_prob) | |
| self.classifier = nn.Linear(config.hidden_size, 1) | |
| # Initialize weights and apply final processing | |
| self.post_init() | |
| def forward( | |
| self, | |
| input_ids: Optional[torch.LongTensor] = None, | |
| token_type_ids: Optional[torch.LongTensor] = None, | |
| attention_mask: Optional[torch.FloatTensor] = None, | |
| labels: Optional[torch.LongTensor] = None, | |
| position_ids: Optional[torch.LongTensor] = None, | |
| head_mask: Optional[torch.FloatTensor] = None, | |
| inputs_embeds: Optional[torch.FloatTensor] = None, | |
| output_attentions: Optional[bool] = None, | |
| output_hidden_states: Optional[bool] = None, | |
| return_dict: Optional[bool] = None, | |
| ) -> Union[Tuple[torch.Tensor], MultipleChoiceModelOutput]: | |
| r""" | |
| labels (`torch.LongTensor` of shape `(batch_size,)`, *optional*): | |
| Labels for computing the multiple choice classification loss. Indices should be in `[0, ..., | |
| num_choices-1]` where `num_choices` is the size of the second dimension of the input tensors. (See | |
| `input_ids` above) | |
| """ | |
| return_dict = return_dict if return_dict is not None else self.config.use_return_dict | |
| num_choices = input_ids.shape[1] if input_ids is not None else inputs_embeds.shape[1] | |
| flat_input_ids = input_ids.view(-1, input_ids.size(-1)) if input_ids is not None else None | |
| flat_position_ids = position_ids.view(-1, position_ids.size(-1)) if position_ids is not None else None | |
| flat_token_type_ids = token_type_ids.view(-1, token_type_ids.size(-1)) if token_type_ids is not None else None | |
| flat_attention_mask = attention_mask.view(-1, attention_mask.size(-1)) if attention_mask is not None else None | |
| flat_inputs_embeds = ( | |
| inputs_embeds.view(-1, inputs_embeds.size(-2), inputs_embeds.size(-1)) | |
| if inputs_embeds is not None | |
| else None | |
| ) | |
| outputs = self.roberta( | |
| flat_input_ids, | |
| position_ids=flat_position_ids, | |
| token_type_ids=flat_token_type_ids, | |
| attention_mask=flat_attention_mask, | |
| head_mask=head_mask, | |
| inputs_embeds=flat_inputs_embeds, | |
| output_attentions=output_attentions, | |
| output_hidden_states=output_hidden_states, | |
| return_dict=return_dict, | |
| ) | |
| pooled_output = outputs[1] | |
| pooled_output = self.dropout(pooled_output) | |
| logits = self.classifier(pooled_output) | |
| reshaped_logits = logits.view(-1, num_choices) | |
| loss = None | |
| if labels is not None: | |
| loss_fct = CrossEntropyLoss() | |
| loss = loss_fct(reshaped_logits, labels) | |
| if not return_dict: | |
| output = (reshaped_logits,) + outputs[2:] | |
| return ((loss,) + output) if loss is not None else output | |
| return MultipleChoiceModelOutput( | |
| loss=loss, | |
| logits=reshaped_logits, | |
| hidden_states=outputs.hidden_states, | |
| attentions=outputs.attentions, | |
| ) | |
| class RobertaForTokenClassification(RobertaPreTrainedModel): | |
| _keys_to_ignore_on_load_unexpected = [r"pooler"] | |
| _keys_to_ignore_on_load_missing = [r"position_ids"] | |
| def __init__(self, config): | |
| super().__init__(config) | |
| self.num_labels = config.num_labels | |
| self.roberta = RobertaModel(config, add_pooling_layer=False) | |
| classifier_dropout = ( | |
| config.classifier_dropout if config.classifier_dropout is not None else config.hidden_dropout_prob | |
| ) | |
| self.dropout = nn.Dropout(classifier_dropout) | |
| self.classifier = nn.Linear(config.hidden_size, config.num_labels) | |
| # Initialize weights and apply final processing | |
| self.post_init() | |
| def forward( | |
| self, | |
| input_ids: Optional[torch.LongTensor] = None, | |
| attention_mask: Optional[torch.FloatTensor] = None, | |
| token_type_ids: Optional[torch.LongTensor] = None, | |
| position_ids: Optional[torch.LongTensor] = None, | |
| head_mask: Optional[torch.FloatTensor] = None, | |
| inputs_embeds: Optional[torch.FloatTensor] = None, | |
| labels: Optional[torch.LongTensor] = None, | |
| output_attentions: Optional[bool] = None, | |
| output_hidden_states: Optional[bool] = None, | |
| return_dict: Optional[bool] = None, | |
| ) -> Union[Tuple[torch.Tensor], TokenClassifierOutput]: | |
| r""" | |
| labels (`torch.LongTensor` of shape `(batch_size, sequence_length)`, *optional*): | |
| Labels for computing the token classification loss. Indices should be in `[0, ..., config.num_labels - 1]`. | |
| """ | |
| return_dict = return_dict if return_dict is not None else self.config.use_return_dict | |
| outputs = self.roberta( | |
| input_ids, | |
| attention_mask=attention_mask, | |
| token_type_ids=token_type_ids, | |
| position_ids=position_ids, | |
| head_mask=head_mask, | |
| inputs_embeds=inputs_embeds, | |
| output_attentions=output_attentions, | |
| output_hidden_states=output_hidden_states, | |
| return_dict=return_dict, | |
| ) | |
| sequence_output = outputs[0] | |
| sequence_output = self.dropout(sequence_output) | |
| logits = self.classifier(sequence_output) | |
| loss = None | |
| if labels is not None: | |
| loss_fct = CrossEntropyLoss() | |
| loss = loss_fct(logits.view(-1, self.num_labels), labels.view(-1)) | |
| if not return_dict: | |
| output = (logits,) + outputs[2:] | |
| return ((loss,) + output) if loss is not None else output | |
| return TokenClassifierOutput( | |
| loss=loss, | |
| logits=logits, | |
| hidden_states=outputs.hidden_states, | |
| attentions=outputs.attentions, | |
| ) | |
| class RobertaClassificationHead(nn.Module): | |
| """Head for sentence-level classification tasks.""" | |
| def __init__(self, config): | |
| super().__init__() | |
| self.dense = nn.Linear(config.hidden_size, config.hidden_size) | |
| classifier_dropout = ( | |
| config.classifier_dropout if config.classifier_dropout is not None else config.hidden_dropout_prob | |
| ) | |
| self.dropout = nn.Dropout(classifier_dropout) | |
| self.out_proj = nn.Linear(config.hidden_size, config.num_labels) | |
| def forward(self, features, **kwargs): | |
| x = features[:, 0, :] # take <s> token (equiv. to [CLS]) | |
| x = self.dropout(x) | |
| x = self.dense(x) | |
| x = torch.tanh(x) | |
| x = self.dropout(x) | |
| x = self.out_proj(x) | |
| return x | |
| class RobertaForQuestionAnswering(RobertaPreTrainedModel): | |
| _keys_to_ignore_on_load_unexpected = [r"pooler"] | |
| _keys_to_ignore_on_load_missing = [r"position_ids"] | |
| def __init__(self, config): | |
| super().__init__(config) | |
| self.num_labels = config.num_labels | |
| self.roberta = RobertaModel(config, add_pooling_layer=False) | |
| self.qa_outputs = nn.Linear(config.hidden_size, config.num_labels) | |
| # Initialize weights and apply final processing | |
| self.post_init() | |
| def forward( | |
| self, | |
| input_ids: Optional[torch.LongTensor] = None, | |
| attention_mask: Optional[torch.FloatTensor] = None, | |
| token_type_ids: Optional[torch.LongTensor] = None, | |
| position_ids: Optional[torch.LongTensor] = None, | |
| head_mask: Optional[torch.FloatTensor] = None, | |
| inputs_embeds: Optional[torch.FloatTensor] = None, | |
| start_positions: Optional[torch.LongTensor] = None, | |
| end_positions: Optional[torch.LongTensor] = None, | |
| output_attentions: Optional[bool] = None, | |
| output_hidden_states: Optional[bool] = None, | |
| return_dict: Optional[bool] = None, | |
| ) -> Union[Tuple[torch.Tensor], QuestionAnsweringModelOutput]: | |
| r""" | |
| start_positions (`torch.LongTensor` of shape `(batch_size,)`, *optional*): | |
| Labels for position (index) of the start of the labelled span for computing the token classification loss. | |
| Positions are clamped to the length of the sequence (`sequence_length`). Position outside of the sequence | |
| are not taken into account for computing the loss. | |
| end_positions (`torch.LongTensor` of shape `(batch_size,)`, *optional*): | |
| Labels for position (index) of the end of the labelled span for computing the token classification loss. | |
| Positions are clamped to the length of the sequence (`sequence_length`). Position outside of the sequence | |
| are not taken into account for computing the loss. | |
| """ | |
| return_dict = return_dict if return_dict is not None else self.config.use_return_dict | |
| outputs = self.roberta( | |
| input_ids, | |
| attention_mask=attention_mask, | |
| token_type_ids=token_type_ids, | |
| position_ids=position_ids, | |
| head_mask=head_mask, | |
| inputs_embeds=inputs_embeds, | |
| output_attentions=output_attentions, | |
| output_hidden_states=output_hidden_states, | |
| return_dict=return_dict, | |
| ) | |
| sequence_output = outputs[0] | |
| logits = self.qa_outputs(sequence_output) | |
| start_logits, end_logits = logits.split(1, dim=-1) | |
| start_logits = start_logits.squeeze(-1).contiguous() | |
| end_logits = end_logits.squeeze(-1).contiguous() | |
| total_loss = None | |
| if start_positions is not None and end_positions is not None: | |
| # If we are on multi-GPU, split add a dimension | |
| if len(start_positions.size()) > 1: | |
| start_positions = start_positions.squeeze(-1) | |
| if len(end_positions.size()) > 1: | |
| end_positions = end_positions.squeeze(-1) | |
| # sometimes the start/end positions are outside our model inputs, we ignore these terms | |
| ignored_index = start_logits.size(1) | |
| start_positions = start_positions.clamp(0, ignored_index) | |
| end_positions = end_positions.clamp(0, ignored_index) | |
| loss_fct = CrossEntropyLoss(ignore_index=ignored_index) | |
| start_loss = loss_fct(start_logits, start_positions) | |
| end_loss = loss_fct(end_logits, end_positions) | |
| total_loss = (start_loss + end_loss) / 2 | |
| if not return_dict: | |
| output = (start_logits, end_logits) + outputs[2:] | |
| return ((total_loss,) + output) if total_loss is not None else output | |
| return QuestionAnsweringModelOutput( | |
| loss=total_loss, | |
| start_logits=start_logits, | |
| end_logits=end_logits, | |
| hidden_states=outputs.hidden_states, | |
| attentions=outputs.attentions, | |
| ) | |
| def create_position_ids_from_input_ids(input_ids, padding_idx, past_key_values_length=0): | |
| """ | |
| Replace non-padding symbols with their position numbers. Position numbers begin at padding_idx+1. Padding symbols | |
| are ignored. This is modified from fairseq's `utils.make_positions`. | |
| Args: | |
| x: torch.Tensor x: | |
| Returns: torch.Tensor | |
| """ | |
| # The series of casts and type-conversions here are carefully balanced to both work with ONNX export and XLA. | |
| mask = input_ids.ne(padding_idx).int() | |
| incremental_indices = (torch.cumsum(mask, dim=1).type_as(mask) + past_key_values_length) * mask | |
| return incremental_indices.long() + padding_idx | |