Create app.py
Browse files
app.py
ADDED
|
@@ -0,0 +1,136 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
import gradio as gr
|
| 2 |
+
from transformers import pipeline
|
| 3 |
+
from rdkit import Chem
|
| 4 |
+
from rdkit.Chem import AllChem
|
| 5 |
+
from rdkit.Chem.Draw import rdMolDraw2D
|
| 6 |
+
import base64
|
| 7 |
+
import re
|
| 8 |
+
import py3Dmol
|
| 9 |
+
|
| 10 |
+
# Drug discovery function
|
| 11 |
+
|
| 12 |
+
def drug_discovery(disease, symptoms):
|
| 13 |
+
bio_gpt = pipeline("text-generation", model="microsoft/BioGPT-Large")
|
| 14 |
+
|
| 15 |
+
# Detailed medical prompt
|
| 16 |
+
prompt = (
|
| 17 |
+
f"Act as a biomedical researcher. For the disease '{disease}' with symptoms '{symptoms}', provide a detailed summary of:\n"
|
| 18 |
+
"- Causes\n- Diagnosis methods\n- Treatment options\n- Common medications (include drug names)\n"
|
| 19 |
+
"- Any FDA-approved therapies or hospital protocols\n\nKeep it concise but detailed."
|
| 20 |
+
)
|
| 21 |
+
|
| 22 |
+
try:
|
| 23 |
+
result = bio_gpt(prompt, max_length=512, do_sample=True, temperature=0.7)[0]['generated_text']
|
| 24 |
+
except Exception as e:
|
| 25 |
+
result = f"Could not generate literature due to an error: {e}"
|
| 26 |
+
|
| 27 |
+
result = re.sub(r"<\s*/?\s*(TITLE|FREETEXT)\s*>", "", result)
|
| 28 |
+
result = re.sub(r"^.*?(?=Causes|Diagnosis|Treatment|Common medications)", "", result, flags=re.IGNORECASE)
|
| 29 |
+
|
| 30 |
+
# Generate SMILES
|
| 31 |
+
molecule_prompt = f"Give 5 different valid drug-like SMILES strings that can treat {disease} with symptoms: {symptoms}. Only list SMILES separated by spaces."
|
| 32 |
+
try:
|
| 33 |
+
smiles_result = bio_gpt(molecule_prompt, max_length=100)[0]['generated_text']
|
| 34 |
+
except Exception as e:
|
| 35 |
+
smiles_result = "C1=CC=CC=C1"
|
| 36 |
+
|
| 37 |
+
smiles_matches = re.findall(r"(?<![A-Za-z0-9])[A-Za-z0-9@+\-\[\]\(\)=#$]{5,}(?![A-Za-z0-9])", smiles_result)
|
| 38 |
+
smiles = None
|
| 39 |
+
for match in smiles_matches:
|
| 40 |
+
mol_test = Chem.MolFromSmiles(match)
|
| 41 |
+
if mol_test:
|
| 42 |
+
smiles = match
|
| 43 |
+
break
|
| 44 |
+
if not smiles:
|
| 45 |
+
smiles = "C1=CC=CC=C1"
|
| 46 |
+
|
| 47 |
+
mol = Chem.MolFromSmiles(smiles)
|
| 48 |
+
if not mol:
|
| 49 |
+
return "Invalid SMILES generated", smiles, "", ""
|
| 50 |
+
|
| 51 |
+
AllChem.Compute2DCoords(mol)
|
| 52 |
+
drawer = rdMolDraw2D.MolDraw2DCairo(300, 300)
|
| 53 |
+
drawer.DrawMolecule(mol)
|
| 54 |
+
drawer.FinishDrawing()
|
| 55 |
+
img_data = drawer.GetDrawingText()
|
| 56 |
+
img_base64 = base64.b64encode(img_data).decode("utf-8")
|
| 57 |
+
img_html = f'''<div style="text-align:center; margin-top: 10px; animation: fadeIn 2s ease-in-out;">
|
| 58 |
+
<img src="data:image/png;base64,{img_base64}" alt="2D Molecule"
|
| 59 |
+
style="border-radius: 16px; box-shadow: 0 6px 20px rgba(0,255,255,0.3); border: 1px solid #444;">
|
| 60 |
+
<div style='font-family: Arial, sans-serif; color: #eeeeee; margin-top: 8px; animation: slideUp 1.5s ease-in-out;'>π Visualized Drug Molecule (2D)</div>
|
| 61 |
+
</div>'''
|
| 62 |
+
|
| 63 |
+
mol3d = Chem.AddHs(mol)
|
| 64 |
+
AllChem.EmbedMolecule(mol3d)
|
| 65 |
+
AllChem.UFFOptimizeMolecule(mol3d)
|
| 66 |
+
mb = Chem.MolToMolBlock(mol3d)
|
| 67 |
+
|
| 68 |
+
viewer = py3Dmol.view(width=420, height=420)
|
| 69 |
+
viewer.addModel(mb, "mol")
|
| 70 |
+
viewer.setStyle({"stick": {"colorscheme": "cyanCarbon"}})
|
| 71 |
+
viewer.setBackgroundColor("black")
|
| 72 |
+
viewer.zoomTo()
|
| 73 |
+
viewer.spin(True)
|
| 74 |
+
viewer_html_raw = viewer._make_html()
|
| 75 |
+
|
| 76 |
+
viewer_html = f'''
|
| 77 |
+
<div style="text-align:center; margin-top: 20px; animation: zoomIn 2s ease-in-out;">
|
| 78 |
+
<iframe srcdoc="{viewer_html_raw.replace('"', '"')}"
|
| 79 |
+
width="440" height="440" frameborder="0"
|
| 80 |
+
style="border-radius: 16px; box-shadow: 0 8px 30px rgba(0,255,255,0.35);"></iframe>
|
| 81 |
+
<div style='font-family: Arial, sans-serif; color: #eeeeee; margin-top: 8px; animation: slideUp 1.5s ease-in-out;'>𧬠Animated 3D Molecule (Stick View)</div>
|
| 82 |
+
</div>'''
|
| 83 |
+
|
| 84 |
+
return result.strip(), smiles, img_html, viewer_html
|
| 85 |
+
|
| 86 |
+
# Gradio UI
|
| 87 |
+
|
| 88 |
+
disease_input = gr.Textbox(label="π₯ Enter Disease (e.g., lung cancer)", value="lung cancer")
|
| 89 |
+
symptom_input = gr.Textbox(label="π Enter Symptoms (e.g., cough, weight loss)", value="shortness of breath, weight loss")
|
| 90 |
+
lit_output = gr.Textbox(label="π Literature Insights from BioGPT")
|
| 91 |
+
smiles_output = gr.Textbox(label="π§ͺ SMILES Representation")
|
| 92 |
+
img_output = gr.HTML(label="πΌοΈ Molecule 2D Visualization")
|
| 93 |
+
viewer_output = gr.HTML(label="π¬ 3D Drug Molecule Animation")
|
| 94 |
+
|
| 95 |
+
custom_css = """
|
| 96 |
+
@keyframes fadeIn {
|
| 97 |
+
from {opacity: 0;}
|
| 98 |
+
to {opacity: 1;}
|
| 99 |
+
}
|
| 100 |
+
|
| 101 |
+
@keyframes slideUp {
|
| 102 |
+
from {transform: translateY(40px); opacity: 0;}
|
| 103 |
+
to {transform: translateY(0); opacity: 1;}
|
| 104 |
+
}
|
| 105 |
+
|
| 106 |
+
@keyframes zoomIn {
|
| 107 |
+
from {transform: scale(0.5); opacity: 0;}
|
| 108 |
+
to {transform: scale(1); opacity: 1;}
|
| 109 |
+
}
|
| 110 |
+
|
| 111 |
+
body {
|
| 112 |
+
background: linear-gradient(to right, #0f0f0f, #1a1a1a, #000000);
|
| 113 |
+
color: #eeeeee;
|
| 114 |
+
font-family: 'Segoe UI', Tahoma, Geneva, Verdana, sans-serif;
|
| 115 |
+
}
|
| 116 |
+
|
| 117 |
+
.gradio-container {
|
| 118 |
+
animation: fadeIn 1.5s ease-in-out;
|
| 119 |
+
}
|
| 120 |
+
|
| 121 |
+
.gradio-container .block-label {
|
| 122 |
+
color: #ffffff;
|
| 123 |
+
}
|
| 124 |
+
"""
|
| 125 |
+
|
| 126 |
+
iface = gr.Interface(
|
| 127 |
+
fn=drug_discovery,
|
| 128 |
+
inputs=[disease_input, symptom_input],
|
| 129 |
+
outputs=[lit_output, smiles_output, img_output, viewer_output],
|
| 130 |
+
title="π₯ AI-Powered Drug Discovery for Hospitals",
|
| 131 |
+
description="This hospital-themed platform takes a disease and symptoms as input, retrieves biomedical insights using BioGPT, and visualizes potential drug molecules in 2D and animated 3D. Ideal for clinical research and pharma innovation.",
|
| 132 |
+
theme="default",
|
| 133 |
+
css=custom_css
|
| 134 |
+
)
|
| 135 |
+
|
| 136 |
+
iface.launch(share=True)
|