Spaces:
Runtime error
Runtime error
root
commited on
Commit
·
c5ab12e
1
Parent(s):
c839b4c
deepnote update
Browse files
app.py
CHANGED
|
@@ -14,10 +14,16 @@ from langchain.vectorstores import Chroma
|
|
| 14 |
from langchain.vectorstores.base import VectorStoreRetriever
|
| 15 |
|
| 16 |
|
| 17 |
-
current_agent =
|
| 18 |
vectordb = None
|
| 19 |
|
| 20 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 21 |
def load_dialogues():
|
| 22 |
df = pd.read_excel(os.environ["DIALOGUE_SHEET"], header=0, keep_default_na=False)
|
| 23 |
df = df[df["Agent"] == current_agent]
|
|
@@ -27,13 +33,13 @@ def load_dialogues():
|
|
| 27 |
def load_persona():
|
| 28 |
df = pd.read_excel(os.environ["PERSONA_SHEET"], header=0, keep_default_na=False)
|
| 29 |
df = df[df["Agent"] == current_agent]
|
| 30 |
-
return df
|
| 31 |
|
| 32 |
|
| 33 |
def load_prompts():
|
| 34 |
df = pd.read_excel(os.environ["PROMPT_SHEET"], header=0, keep_default_na=False)
|
| 35 |
df = df[df["Agent"] == current_agent]
|
| 36 |
-
return df
|
| 37 |
|
| 38 |
|
| 39 |
def load_documents(df, page_content_column: str):
|
|
@@ -87,51 +93,48 @@ def get_retriever(context_state: str, vectordb):
|
|
| 87 |
|
| 88 |
@cl.langchain_factory(use_async=True)
|
| 89 |
def factory():
|
|
|
|
| 90 |
load_vectordb()
|
| 91 |
-
df_prompts = load_prompts()
|
| 92 |
user_session.set("context_state", "")
|
|
|
|
|
|
|
| 93 |
|
| 94 |
llm_settings = LLMSettings(
|
| 95 |
model_name="text-davinci-003",
|
| 96 |
-
temperature=
|
| 97 |
)
|
| 98 |
user_session.set("llm_settings", llm_settings)
|
| 99 |
|
| 100 |
-
llm = AzureOpenAI(
|
| 101 |
-
deployment_name="davinci003",
|
| 102 |
-
model_name=llm_settings.model_name,
|
| 103 |
-
temperature=llm_settings.temperature,
|
| 104 |
-
streaming=True,
|
| 105 |
-
)
|
| 106 |
-
|
| 107 |
-
utterance_prompt = PromptTemplate.from_template(df_prompts["Template"].values[0])
|
| 108 |
-
|
| 109 |
chat_memory = ConversationBufferWindowMemory(
|
| 110 |
memory_key="History",
|
| 111 |
input_key="Utterance",
|
| 112 |
-
k=
|
| 113 |
)
|
|
|
|
| 114 |
|
| 115 |
-
|
| 116 |
-
|
| 117 |
-
|
| 118 |
-
|
| 119 |
-
|
| 120 |
)
|
| 121 |
|
| 122 |
-
|
| 123 |
-
|
| 124 |
-
|
| 125 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 126 |
llm=llm,
|
| 127 |
-
verbose=
|
| 128 |
memory=chat_memory,
|
| 129 |
)
|
| 130 |
|
| 131 |
-
user_session.set("continuation_chain", continuation_chain)
|
| 132 |
-
|
| 133 |
-
return utterance_chain
|
| 134 |
-
|
| 135 |
|
| 136 |
@cl.langchain_run
|
| 137 |
async def run(agent, input_str):
|
|
@@ -140,48 +143,81 @@ async def run(agent, input_str):
|
|
| 140 |
vectordb = load_vectordb(True)
|
| 141 |
return await cl.Message(content="Data loaded").send()
|
| 142 |
|
| 143 |
-
|
|
|
|
|
|
|
| 144 |
|
| 145 |
retriever = get_retriever(user_session.get("context_state"), vectordb)
|
| 146 |
-
|
| 147 |
document = retriever.get_relevant_documents(query=input_str)
|
| 148 |
|
| 149 |
-
|
| 150 |
-
|
| 151 |
-
|
| 152 |
-
|
| 153 |
-
].
|
| 154 |
-
|
| 155 |
-
|
| 156 |
-
|
| 157 |
-
|
| 158 |
-
|
| 159 |
-
|
| 160 |
-
|
| 161 |
-
|
| 162 |
-
llm_settings
|
| 163 |
-
).send()
|
| 164 |
-
user_session.set("context_state", document[0].metadata["Contextualisation"])
|
| 165 |
-
continuation = document[0].metadata["Continuation"]
|
| 166 |
|
| 167 |
-
|
| 168 |
-
document_continuation = vectordb.get(where={"Intent": continuation})
|
| 169 |
-
continuation_chain = user_session.get("continuation_chain")
|
| 170 |
-
response = await continuation_chain.acall(
|
| 171 |
{
|
| 172 |
"Persona": df_persona.loc[
|
| 173 |
-
df_persona["
|
| 174 |
]["Persona"].values[0],
|
| 175 |
-
"Utterance":
|
| 176 |
-
"Response":
|
| 177 |
},
|
| 178 |
callbacks=[cl.AsyncLangchainCallbackHandler()],
|
| 179 |
)
|
| 180 |
await cl.Message(
|
| 181 |
content=response["text"],
|
| 182 |
-
author=
|
| 183 |
-
llm_settings=
|
| 184 |
).send()
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 185 |
user_session.set(
|
| 186 |
"context_state",
|
| 187 |
document_continuation["metadatas"][0]["Contextualisation"],
|
|
|
|
| 14 |
from langchain.vectorstores.base import VectorStoreRetriever
|
| 15 |
|
| 16 |
|
| 17 |
+
current_agent = "Demo"
|
| 18 |
vectordb = None
|
| 19 |
|
| 20 |
|
| 21 |
+
def load_agent():
|
| 22 |
+
df = pd.read_excel(os.environ["AGENT_SHEET"], header=0, keep_default_na=False)
|
| 23 |
+
df = df[df["Agent"] == current_agent]
|
| 24 |
+
return df
|
| 25 |
+
|
| 26 |
+
|
| 27 |
def load_dialogues():
|
| 28 |
df = pd.read_excel(os.environ["DIALOGUE_SHEET"], header=0, keep_default_na=False)
|
| 29 |
df = df[df["Agent"] == current_agent]
|
|
|
|
| 33 |
def load_persona():
|
| 34 |
df = pd.read_excel(os.environ["PERSONA_SHEET"], header=0, keep_default_na=False)
|
| 35 |
df = df[df["Agent"] == current_agent]
|
| 36 |
+
return df
|
| 37 |
|
| 38 |
|
| 39 |
def load_prompts():
|
| 40 |
df = pd.read_excel(os.environ["PROMPT_SHEET"], header=0, keep_default_na=False)
|
| 41 |
df = df[df["Agent"] == current_agent]
|
| 42 |
+
return df
|
| 43 |
|
| 44 |
|
| 45 |
def load_documents(df, page_content_column: str):
|
|
|
|
| 93 |
|
| 94 |
@cl.langchain_factory(use_async=True)
|
| 95 |
def factory():
|
| 96 |
+
df_agent = load_agent()
|
| 97 |
load_vectordb()
|
|
|
|
| 98 |
user_session.set("context_state", "")
|
| 99 |
+
user_session.set("df_prompts", load_prompts())
|
| 100 |
+
user_session.set("df_persona", load_persona())
|
| 101 |
|
| 102 |
llm_settings = LLMSettings(
|
| 103 |
model_name="text-davinci-003",
|
| 104 |
+
temperature=0.7,
|
| 105 |
)
|
| 106 |
user_session.set("llm_settings", llm_settings)
|
| 107 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 108 |
chat_memory = ConversationBufferWindowMemory(
|
| 109 |
memory_key="History",
|
| 110 |
input_key="Utterance",
|
| 111 |
+
k=df_agent["History"].values[0],
|
| 112 |
)
|
| 113 |
+
user_session.set("chat_memory", chat_memory)
|
| 114 |
|
| 115 |
+
llm = AzureOpenAI(
|
| 116 |
+
deployment_name="davinci003",
|
| 117 |
+
model_name=llm_settings.model_name,
|
| 118 |
+
temperature=llm_settings.temperature,
|
| 119 |
+
streaming=True,
|
| 120 |
)
|
| 121 |
|
| 122 |
+
default_prompt = """{History}
|
| 123 |
+
##
|
| 124 |
+
System: {Persona}
|
| 125 |
+
##
|
| 126 |
+
Human: {Utterance}
|
| 127 |
+
Response: {Response}
|
| 128 |
+
##
|
| 129 |
+
AI:"""
|
| 130 |
+
|
| 131 |
+
return LLMChain(
|
| 132 |
+
prompt=PromptTemplate.from_template(default_prompt),
|
| 133 |
llm=llm,
|
| 134 |
+
verbose=True,
|
| 135 |
memory=chat_memory,
|
| 136 |
)
|
| 137 |
|
|
|
|
|
|
|
|
|
|
|
|
|
| 138 |
|
| 139 |
@cl.langchain_run
|
| 140 |
async def run(agent, input_str):
|
|
|
|
| 143 |
vectordb = load_vectordb(True)
|
| 144 |
return await cl.Message(content="Data loaded").send()
|
| 145 |
|
| 146 |
+
df_prompts = user_session.get("df_prompts")
|
| 147 |
+
df_persona = user_session.get("df_persona")
|
| 148 |
+
llm_settings = user_session.get("llm_settings")
|
| 149 |
|
| 150 |
retriever = get_retriever(user_session.get("context_state"), vectordb)
|
|
|
|
| 151 |
document = retriever.get_relevant_documents(query=input_str)
|
| 152 |
|
| 153 |
+
prompt = document[0].metadata["Prompt"]
|
| 154 |
+
if not prompt:
|
| 155 |
+
await cl.Message(
|
| 156 |
+
content=document[0].metadata["Response"],
|
| 157 |
+
author=document[0].metadata["Role"],
|
| 158 |
+
).send()
|
| 159 |
+
else:
|
| 160 |
+
agent.prompt = PromptTemplate.from_template(
|
| 161 |
+
df_prompts.loc[df_prompts["Prompt"] == prompt]["Template"].values[0]
|
| 162 |
+
)
|
| 163 |
+
llm_settings.temperature = df_prompts.loc[df_prompts["Prompt"] == prompt][
|
| 164 |
+
"Temperature"
|
| 165 |
+
].values[0]
|
| 166 |
+
agent.llm.temperature = llm_settings.temperature
|
|
|
|
|
|
|
|
|
|
| 167 |
|
| 168 |
+
response = await agent.acall(
|
|
|
|
|
|
|
|
|
|
| 169 |
{
|
| 170 |
"Persona": df_persona.loc[
|
| 171 |
+
df_persona["Role"] == document[0].metadata["Role"]
|
| 172 |
]["Persona"].values[0],
|
| 173 |
+
"Utterance": input_str,
|
| 174 |
+
"Response": document[0].metadata["Response"],
|
| 175 |
},
|
| 176 |
callbacks=[cl.AsyncLangchainCallbackHandler()],
|
| 177 |
)
|
| 178 |
await cl.Message(
|
| 179 |
content=response["text"],
|
| 180 |
+
author=document[0].metadata["Role"],
|
| 181 |
+
llm_settings=llm_settings,
|
| 182 |
).send()
|
| 183 |
+
|
| 184 |
+
user_session.set("context_state", document[0].metadata["Contextualisation"])
|
| 185 |
+
continuation = document[0].metadata["Continuation"]
|
| 186 |
+
|
| 187 |
+
while continuation != "":
|
| 188 |
+
document_continuation = vectordb.get(where={"Intent": continuation})
|
| 189 |
+
|
| 190 |
+
prompt = document_continuation["metadatas"][0]["Prompt"]
|
| 191 |
+
if not prompt:
|
| 192 |
+
await cl.Message(
|
| 193 |
+
content=document_continuation["metadatas"][0]["Response"],
|
| 194 |
+
author=document_continuation["metadatas"][0]["Role"],
|
| 195 |
+
).send()
|
| 196 |
+
else:
|
| 197 |
+
agent.prompt = PromptTemplate.from_template(
|
| 198 |
+
df_prompts.loc[df_prompts["Prompt"] == prompt]["Template"].values[0]
|
| 199 |
+
)
|
| 200 |
+
llm_settings.temperature = df_prompts.loc[df_prompts["Prompt"] == prompt][
|
| 201 |
+
"Temperature"
|
| 202 |
+
].values[0]
|
| 203 |
+
agent.llm.temperature = llm_settings.temperature
|
| 204 |
+
|
| 205 |
+
response = await agent.acall(
|
| 206 |
+
{
|
| 207 |
+
"Persona": df_persona.loc[
|
| 208 |
+
df_persona["Role"]
|
| 209 |
+
== document_continuation["metadatas"][0]["Role"]
|
| 210 |
+
]["Persona"].values[0],
|
| 211 |
+
"Utterance": "",
|
| 212 |
+
"Response": document_continuation["metadatas"][0]["Response"],
|
| 213 |
+
},
|
| 214 |
+
callbacks=[cl.AsyncLangchainCallbackHandler()],
|
| 215 |
+
)
|
| 216 |
+
await cl.Message(
|
| 217 |
+
content=response["text"],
|
| 218 |
+
author=document_continuation["metadatas"][0]["Role"],
|
| 219 |
+
llm_settings=llm_settings,
|
| 220 |
+
).send()
|
| 221 |
user_session.set(
|
| 222 |
"context_state",
|
| 223 |
document_continuation["metadatas"][0]["Contextualisation"],
|