Spaces:
Sleeping
Sleeping
Update
Browse files
app.py
CHANGED
|
@@ -34,7 +34,7 @@ async def ask_api(request: AskRequest):
|
|
| 34 |
documents = faq.similarity_search(vectordb, request.question, k=request.k)
|
| 35 |
df_doc = util.transform_documents_to_dataframe(documents)
|
| 36 |
df_filter = util.remove_duplicates_by_column(df_doc, "ID")
|
| 37 |
-
return util.
|
| 38 |
|
| 39 |
|
| 40 |
@app.delete("/api/v1/")
|
|
|
|
| 34 |
documents = faq.similarity_search(vectordb, request.question, k=request.k)
|
| 35 |
df_doc = util.transform_documents_to_dataframe(documents)
|
| 36 |
df_filter = util.remove_duplicates_by_column(df_doc, "ID")
|
| 37 |
+
return util.dataframe_to_dict(df_filter)
|
| 38 |
|
| 39 |
|
| 40 |
@app.delete("/api/v1/")
|
faq.py
CHANGED
|
@@ -1,3 +1,4 @@
|
|
|
|
|
| 1 |
import pandas as pd
|
| 2 |
from langchain.document_loaders import DataFrameLoader
|
| 3 |
from langchain.embeddings import HuggingFaceEmbeddings
|
|
@@ -10,30 +11,12 @@ import os
|
|
| 10 |
import shutil
|
| 11 |
from enum import Enum
|
| 12 |
|
| 13 |
-
SHEET_URL_X = "https://docs.google.com/spreadsheets/d/"
|
| 14 |
-
SHEET_URL_Y = "/edit#gid="
|
| 15 |
-
SHEET_URL_Y_EXPORT = "/export?gid="
|
| 16 |
EMBEDDING_MODEL_FOLDER = ".embedding-model"
|
| 17 |
VECTORDB_FOLDER = ".vectordb"
|
| 18 |
EMBEDDING_MODEL = "sentence-transformers/all-mpnet-base-v2"
|
| 19 |
VECTORDB_TYPE = Enum("VECTORDB_TYPE", ["AwaDB", "Chroma"])
|
| 20 |
|
| 21 |
|
| 22 |
-
def faq_id(sheet_url: str) -> str:
|
| 23 |
-
x = sheet_url.find(SHEET_URL_X)
|
| 24 |
-
y = sheet_url.find(SHEET_URL_Y)
|
| 25 |
-
return sheet_url[x + len(SHEET_URL_X) : y] + "-" + sheet_url[y + len(SHEET_URL_Y) :]
|
| 26 |
-
|
| 27 |
-
|
| 28 |
-
def xlsx_url(faq_id: str) -> str:
|
| 29 |
-
y = faq_id.rfind("-")
|
| 30 |
-
return SHEET_URL_X + faq_id[0:y] + SHEET_URL_Y_EXPORT + faq_id[y + 1 :]
|
| 31 |
-
|
| 32 |
-
|
| 33 |
-
def read_df(xlsx_url: str) -> pd.DataFrame:
|
| 34 |
-
return pd.read_excel(xlsx_url, header=0, keep_default_na=False)
|
| 35 |
-
|
| 36 |
-
|
| 37 |
def create_documents(df: pd.DataFrame, page_content_column: str) -> pd.DataFrame:
|
| 38 |
loader = DataFrameLoader(df, page_content_column=page_content_column)
|
| 39 |
return loader.load()
|
|
@@ -109,7 +92,7 @@ def create_vectordb_id(
|
|
| 109 |
if embedding_function is None:
|
| 110 |
embedding_function = define_embedding_function(EMBEDDING_MODEL)
|
| 111 |
|
| 112 |
-
df = read_df(xlsx_url(faq_id))
|
| 113 |
documents = create_documents(df, page_content_column)
|
| 114 |
vectordb = get_vectordb(
|
| 115 |
faq_id=faq_id, embedding_function=embedding_function, documents=documents
|
|
@@ -118,7 +101,7 @@ def create_vectordb_id(
|
|
| 118 |
|
| 119 |
|
| 120 |
def load_vectordb(sheet_url: str, page_content_column: str) -> VectorStore:
|
| 121 |
-
return load_vectordb_id(
|
| 122 |
|
| 123 |
|
| 124 |
def delete_vectordb():
|
|
|
|
| 1 |
+
import util as util
|
| 2 |
import pandas as pd
|
| 3 |
from langchain.document_loaders import DataFrameLoader
|
| 4 |
from langchain.embeddings import HuggingFaceEmbeddings
|
|
|
|
| 11 |
import shutil
|
| 12 |
from enum import Enum
|
| 13 |
|
|
|
|
|
|
|
|
|
|
| 14 |
EMBEDDING_MODEL_FOLDER = ".embedding-model"
|
| 15 |
VECTORDB_FOLDER = ".vectordb"
|
| 16 |
EMBEDDING_MODEL = "sentence-transformers/all-mpnet-base-v2"
|
| 17 |
VECTORDB_TYPE = Enum("VECTORDB_TYPE", ["AwaDB", "Chroma"])
|
| 18 |
|
| 19 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 20 |
def create_documents(df: pd.DataFrame, page_content_column: str) -> pd.DataFrame:
|
| 21 |
loader = DataFrameLoader(df, page_content_column=page_content_column)
|
| 22 |
return loader.load()
|
|
|
|
| 92 |
if embedding_function is None:
|
| 93 |
embedding_function = define_embedding_function(EMBEDDING_MODEL)
|
| 94 |
|
| 95 |
+
df = util.read_df(util.xlsx_url(faq_id))
|
| 96 |
documents = create_documents(df, page_content_column)
|
| 97 |
vectordb = get_vectordb(
|
| 98 |
faq_id=faq_id, embedding_function=embedding_function, documents=documents
|
|
|
|
| 101 |
|
| 102 |
|
| 103 |
def load_vectordb(sheet_url: str, page_content_column: str) -> VectorStore:
|
| 104 |
+
return load_vectordb_id(util.get_id(sheet_url), page_content_column)
|
| 105 |
|
| 106 |
|
| 107 |
def delete_vectordb():
|
util.py
CHANGED
|
@@ -1,5 +1,25 @@
|
|
| 1 |
import pandas as pd
|
| 2 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 3 |
def split_page_breaks(df, column_name):
|
| 4 |
split_values = df[column_name].str.split("\n")
|
| 5 |
|
|
@@ -43,7 +63,7 @@ def remove_duplicates_by_column(df, column):
|
|
| 43 |
return df
|
| 44 |
|
| 45 |
|
| 46 |
-
def
|
| 47 |
-
|
| 48 |
|
| 49 |
-
return
|
|
|
|
| 1 |
import pandas as pd
|
| 2 |
|
| 3 |
+
SHEET_URL_X = "https://docs.google.com/spreadsheets/d/"
|
| 4 |
+
SHEET_URL_Y = "/edit#gid="
|
| 5 |
+
SHEET_URL_Y_EXPORT = "/export?gid="
|
| 6 |
+
|
| 7 |
+
|
| 8 |
+
def get_id(sheet_url: str) -> str:
|
| 9 |
+
x = sheet_url.find(SHEET_URL_X)
|
| 10 |
+
y = sheet_url.find(SHEET_URL_Y)
|
| 11 |
+
return sheet_url[x + len(SHEET_URL_X) : y] + "-" + sheet_url[y + len(SHEET_URL_Y) :]
|
| 12 |
+
|
| 13 |
+
|
| 14 |
+
def xlsx_url(get_id: str) -> str:
|
| 15 |
+
y = get_id.rfind("-")
|
| 16 |
+
return SHEET_URL_X + get_id[0:y] + SHEET_URL_Y_EXPORT + get_id[y + 1 :]
|
| 17 |
+
|
| 18 |
+
|
| 19 |
+
def read_df(xlsx_url: str) -> pd.DataFrame:
|
| 20 |
+
return pd.read_excel(xlsx_url, header=0, keep_default_na=False)
|
| 21 |
+
|
| 22 |
+
|
| 23 |
def split_page_breaks(df, column_name):
|
| 24 |
split_values = df[column_name].str.split("\n")
|
| 25 |
|
|
|
|
| 63 |
return df
|
| 64 |
|
| 65 |
|
| 66 |
+
def dataframe_to_dict(df):
|
| 67 |
+
df_records = df.to_dict(orient='records')
|
| 68 |
|
| 69 |
+
return df_records
|