Spaces:
Sleeping
Sleeping
Commit
·
78aafcc
1
Parent(s):
67bfb80
deepnote update
Browse files
app.py
CHANGED
|
@@ -38,6 +38,7 @@ async def delete_vectordb_api():
|
|
| 38 |
|
| 39 |
|
| 40 |
def ask(sheet_url: str, page_content_column: str, k: int, question: str):
|
|
|
|
| 41 |
vectordb = faq.load_vectordb(sheet_url, page_content_column)
|
| 42 |
result = faq.similarity_search(vectordb, question, k=k)
|
| 43 |
return result
|
|
|
|
| 38 |
|
| 39 |
|
| 40 |
def ask(sheet_url: str, page_content_column: str, k: int, question: str):
|
| 41 |
+
util.SPLIT_PAGE_BREAKS = False
|
| 42 |
vectordb = faq.load_vectordb(sheet_url, page_content_column)
|
| 43 |
result = faq.similarity_search(vectordb, question, k=k)
|
| 44 |
return result
|
faq.py
CHANGED
|
@@ -14,7 +14,8 @@ from enum import Enum
|
|
| 14 |
EMBEDDING_MODEL_FOLDER = ".embedding-model"
|
| 15 |
VECTORDB_FOLDER = ".vectordb"
|
| 16 |
EMBEDDING_MODEL = "sentence-transformers/all-mpnet-base-v2"
|
| 17 |
-
|
|
|
|
| 18 |
|
| 19 |
|
| 20 |
def create_documents(df: pd.DataFrame, page_content_column: str) -> pd.DataFrame:
|
|
@@ -31,13 +32,18 @@ def define_embedding_function(model_name: str) -> HuggingFaceEmbeddings:
|
|
| 31 |
|
| 32 |
|
| 33 |
def get_vectordb(
|
| 34 |
-
faq_id: str,
|
|
|
|
|
|
|
|
|
|
| 35 |
) -> VectorStore:
|
| 36 |
vectordb = None
|
| 37 |
|
| 38 |
-
if vectordb_type is
|
| 39 |
if documents is None:
|
| 40 |
-
vectordb = AwaDB(
|
|
|
|
|
|
|
| 41 |
if not vectordb.load_local(table_name=faq_id):
|
| 42 |
raise Exception("faq_id may not exists")
|
| 43 |
else:
|
|
@@ -47,9 +53,13 @@ def get_vectordb(
|
|
| 47 |
table_name=faq_id,
|
| 48 |
log_and_data_dir=VECTORDB_FOLDER,
|
| 49 |
)
|
| 50 |
-
if vectordb_type is
|
| 51 |
if documents is None:
|
| 52 |
-
vectordb = Chroma(
|
|
|
|
|
|
|
|
|
|
|
|
|
| 53 |
if not vectordb.get()["ids"]:
|
| 54 |
raise Exception("faq_id may not exists")
|
| 55 |
else:
|
|
@@ -79,6 +89,7 @@ def load_vectordb_id(
|
|
| 79 |
try:
|
| 80 |
vectordb = get_vectordb(faq_id=faq_id, embedding_function=embedding_function)
|
| 81 |
except Exception as e:
|
|
|
|
| 82 |
vectordb = create_vectordb_id(faq_id, page_content_column, embedding_function)
|
| 83 |
|
| 84 |
return vectordb
|
|
|
|
| 14 |
EMBEDDING_MODEL_FOLDER = ".embedding-model"
|
| 15 |
VECTORDB_FOLDER = ".vectordb"
|
| 16 |
EMBEDDING_MODEL = "sentence-transformers/all-mpnet-base-v2"
|
| 17 |
+
VECTORDB_TYPES = Enum("VECTORDB_TYPES", ["AwaDB", "Chroma"])
|
| 18 |
+
VECTORDB_TYPE = VECTORDB_TYPES.AwaDB
|
| 19 |
|
| 20 |
|
| 21 |
def create_documents(df: pd.DataFrame, page_content_column: str) -> pd.DataFrame:
|
|
|
|
| 32 |
|
| 33 |
|
| 34 |
def get_vectordb(
|
| 35 |
+
faq_id: str,
|
| 36 |
+
embedding_function: Embeddings,
|
| 37 |
+
documents: List[Document] = None,
|
| 38 |
+
vectordb_type: str = VECTORDB_TYPE,
|
| 39 |
) -> VectorStore:
|
| 40 |
vectordb = None
|
| 41 |
|
| 42 |
+
if vectordb_type is VECTORDB_TYPES.AwaDB:
|
| 43 |
if documents is None:
|
| 44 |
+
vectordb = AwaDB(
|
| 45 |
+
embedding=embedding_function, log_and_data_dir=VECTORDB_FOLDER
|
| 46 |
+
)
|
| 47 |
if not vectordb.load_local(table_name=faq_id):
|
| 48 |
raise Exception("faq_id may not exists")
|
| 49 |
else:
|
|
|
|
| 53 |
table_name=faq_id,
|
| 54 |
log_and_data_dir=VECTORDB_FOLDER,
|
| 55 |
)
|
| 56 |
+
if vectordb_type is VECTORDB_TYPES.Chroma:
|
| 57 |
if documents is None:
|
| 58 |
+
vectordb = Chroma(
|
| 59 |
+
collection_name=faq_id,
|
| 60 |
+
embedding_function=embedding_function,
|
| 61 |
+
persist_directory=VECTORDB_FOLDER,
|
| 62 |
+
)
|
| 63 |
if not vectordb.get()["ids"]:
|
| 64 |
raise Exception("faq_id may not exists")
|
| 65 |
else:
|
|
|
|
| 89 |
try:
|
| 90 |
vectordb = get_vectordb(faq_id=faq_id, embedding_function=embedding_function)
|
| 91 |
except Exception as e:
|
| 92 |
+
print(e)
|
| 93 |
vectordb = create_vectordb_id(faq_id, page_content_column, embedding_function)
|
| 94 |
|
| 95 |
return vectordb
|
util.py
CHANGED
|
@@ -68,6 +68,6 @@ def remove_duplicates_by_column(df, column):
|
|
| 68 |
|
| 69 |
|
| 70 |
def dataframe_to_dict(df):
|
| 71 |
-
df_records = df.to_dict(orient=
|
| 72 |
|
| 73 |
-
return df_records
|
|
|
|
| 68 |
|
| 69 |
|
| 70 |
def dataframe_to_dict(df):
|
| 71 |
+
df_records = df.to_dict(orient="records")
|
| 72 |
|
| 73 |
+
return df_records
|