Spaces:
Running
Running
Commit
·
24d9d43
1
Parent(s):
3469da9
WIP
Browse files- app.py +26 -8
- requirements.txt +1 -0
app.py
CHANGED
|
@@ -1,23 +1,33 @@
|
|
| 1 |
import json
|
|
|
|
| 2 |
|
| 3 |
import gradio as gr
|
|
|
|
| 4 |
from transformers import pipeline, AutoTokenizer, AutoModelForTokenClassification
|
| 5 |
|
| 6 |
tokenizer = AutoTokenizer.from_pretrained("d4data/biomedical-ner-all")
|
| 7 |
model = AutoModelForTokenClassification.from_pretrained("d4data/biomedical-ner-all")
|
| 8 |
|
| 9 |
-
|
|
|
|
| 10 |
with open("examples.json", "r") as f:
|
| 11 |
example_json = json.load(f)
|
| 12 |
-
|
| 13 |
-
|
| 14 |
|
| 15 |
pipe = pipeline("ner", model=model, tokenizer=tokenizer, aggregation_strategy="simple")
|
| 16 |
|
| 17 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 18 |
def ner(text):
|
| 19 |
raw = pipe(text)
|
| 20 |
-
|
| 21 |
"text": text,
|
| 22 |
"entities": [
|
| 23 |
{
|
|
@@ -30,14 +40,22 @@ def ner(text):
|
|
| 30 |
for x in raw
|
| 31 |
],
|
| 32 |
}
|
| 33 |
-
|
|
|
|
|
|
|
|
|
|
| 34 |
|
| 35 |
|
| 36 |
interface = gr.Interface(
|
| 37 |
ner,
|
| 38 |
-
inputs=gr.Textbox(label="
|
| 39 |
-
outputs=[
|
| 40 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 41 |
)
|
| 42 |
|
| 43 |
interface.launch()
|
|
|
|
| 1 |
import json
|
| 2 |
+
from collections import defaultdict
|
| 3 |
|
| 4 |
import gradio as gr
|
| 5 |
+
import pandas as pd
|
| 6 |
from transformers import pipeline, AutoTokenizer, AutoModelForTokenClassification
|
| 7 |
|
| 8 |
tokenizer = AutoTokenizer.from_pretrained("d4data/biomedical-ner-all")
|
| 9 |
model = AutoModelForTokenClassification.from_pretrained("d4data/biomedical-ner-all")
|
| 10 |
|
| 11 |
+
|
| 12 |
+
EXAMPLE_MAP = {}
|
| 13 |
with open("examples.json", "r") as f:
|
| 14 |
example_json = json.load(f)
|
| 15 |
+
EXAMPLE_MAP = {x["text"]: x["label"] for x in example_json}
|
|
|
|
| 16 |
|
| 17 |
pipe = pipeline("ner", model=model, tokenizer=tokenizer, aggregation_strategy="simple")
|
| 18 |
|
| 19 |
|
| 20 |
+
def group_by_entity(raw):
|
| 21 |
+
out = defaultdict(int)
|
| 22 |
+
for ent in raw:
|
| 23 |
+
out[ent["entity_group"]] += 1
|
| 24 |
+
out["total"] = sum(out.values())
|
| 25 |
+
return out
|
| 26 |
+
|
| 27 |
+
|
| 28 |
def ner(text):
|
| 29 |
raw = pipe(text)
|
| 30 |
+
ner_content = {
|
| 31 |
"text": text,
|
| 32 |
"entities": [
|
| 33 |
{
|
|
|
|
| 40 |
for x in raw
|
| 41 |
],
|
| 42 |
}
|
| 43 |
+
grouped = group_by_entity(raw)
|
| 44 |
+
df = pd.DataFrame({"Entity": grouped.keys(), "Count": grouped.values()})
|
| 45 |
+
label = EXAMPLE_MAP.get(text, None)
|
| 46 |
+
return (ner_content, grouped, label, df.hist())
|
| 47 |
|
| 48 |
|
| 49 |
interface = gr.Interface(
|
| 50 |
ner,
|
| 51 |
+
inputs=gr.Textbox(label="Note text", value=""),
|
| 52 |
+
outputs=[
|
| 53 |
+
gr.HighlightedText(label="NER", combine_adjacent=True),
|
| 54 |
+
gr.JSON(label="Entity Counts"),
|
| 55 |
+
gr.Label(label="Rating"),
|
| 56 |
+
"plot",
|
| 57 |
+
],
|
| 58 |
+
examples=list(EXAMPLE_MAP.keys()),
|
| 59 |
)
|
| 60 |
|
| 61 |
interface.launch()
|
requirements.txt
CHANGED
|
@@ -60,6 +60,7 @@ sniffio==1.3.0
|
|
| 60 |
starlette==0.20.4
|
| 61 |
tokenizers==0.12.1
|
| 62 |
tomli==2.0.1
|
|
|
|
| 63 |
tqdm==4.64.1
|
| 64 |
transformers==4.22.2
|
| 65 |
typing_extensions==4.4.0
|
|
|
|
| 60 |
starlette==0.20.4
|
| 61 |
tokenizers==0.12.1
|
| 62 |
tomli==2.0.1
|
| 63 |
+
torch==1.12.1
|
| 64 |
tqdm==4.64.1
|
| 65 |
transformers==4.22.2
|
| 66 |
typing_extensions==4.4.0
|