Spaces:
Sleeping
Sleeping
Create app.py
Browse files
app.py
ADDED
|
@@ -0,0 +1,59 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
from transformers import pipeline, SamModel, SamProcessor
|
| 2 |
+
import torch
|
| 3 |
+
import numpy as np
|
| 4 |
+
|
| 5 |
+
checkpoint = "google/owlvit-base-patch16"
|
| 6 |
+
detector = pipeline(model=checkpoint, task="zero-shot-object-detection")
|
| 7 |
+
sam_model = SamModel.from_pretrained("facebook/sam-vit-base").to("cuda")
|
| 8 |
+
sam_processor = SamProcessor.from_pretrained("facebook/sam-vit-base")
|
| 9 |
+
|
| 10 |
+
def query(image, texts, threshold):
|
| 11 |
+
texts = texts.split(",")
|
| 12 |
+
print(texts)
|
| 13 |
+
print(image.size)
|
| 14 |
+
predictions = detector(
|
| 15 |
+
image,
|
| 16 |
+
candidate_labels=texts,
|
| 17 |
+
)
|
| 18 |
+
print(predictions)
|
| 19 |
+
result_labels = []
|
| 20 |
+
for pred in predictions:
|
| 21 |
+
|
| 22 |
+
box = pred["box"]
|
| 23 |
+
score = pred["score"]
|
| 24 |
+
label = pred["label"]
|
| 25 |
+
box = [round(pred["box"]["xmin"], 2), round(pred["box"]["ymin"], 2),
|
| 26 |
+
round(pred["box"]["xmax"], 2), round(pred["box"]["ymax"], 2)]
|
| 27 |
+
|
| 28 |
+
inputs = sam_processor(
|
| 29 |
+
image,
|
| 30 |
+
input_boxes=[[[box]]],
|
| 31 |
+
return_tensors="pt"
|
| 32 |
+
).to("cuda")
|
| 33 |
+
|
| 34 |
+
with torch.no_grad():
|
| 35 |
+
outputs = sam_model(**inputs)
|
| 36 |
+
|
| 37 |
+
mask = sam_processor.image_processor.post_process_masks(
|
| 38 |
+
outputs.pred_masks.cpu(),
|
| 39 |
+
inputs["original_sizes"].cpu(),
|
| 40 |
+
inputs["reshaped_input_sizes"].cpu()
|
| 41 |
+
)[0][0][0].numpy()
|
| 42 |
+
mask = mask[np.newaxis, ...]
|
| 43 |
+
result_labels.append((mask, label))
|
| 44 |
+
return image, result_labels
|
| 45 |
+
|
| 46 |
+
import gradio as gr
|
| 47 |
+
|
| 48 |
+
description = "This Space combines OWLv2, the state-of-the-art zero-shot object detection model with SAM, the state-of-the-art mask generation model. SAM normally doesn't accept text input. Combining SAM with OWLv2 makes SAM text promptable."
|
| 49 |
+
demo = gr.Interface(
|
| 50 |
+
query,
|
| 51 |
+
inputs=[gr.Image(type="pil"), "text", gr.Slider(0, 1, value=0.2)],
|
| 52 |
+
outputs="annotatedimage",
|
| 53 |
+
title="OWL 🤝 SAM",
|
| 54 |
+
#description=description,
|
| 55 |
+
examples=[
|
| 56 |
+
["/content/cats.png", "cat", 0.1],
|
| 57 |
+
],
|
| 58 |
+
)
|
| 59 |
+
demo.launch(debug=True)
|