Spaces:
Runtime error
Runtime error
Commit
Β·
2f78375
1
Parent(s):
6bff0b5
add data split tab + refactor
Browse files
app.py
CHANGED
|
@@ -7,6 +7,7 @@ import plotly.express as px
|
|
| 7 |
from utils import (
|
| 8 |
KEY_TO_CATEGORY_NAME,
|
| 9 |
PROPRIETARY_LICENSES,
|
|
|
|
| 10 |
download_latest_data_from_space,
|
| 11 |
)
|
| 12 |
|
|
@@ -55,30 +56,66 @@ for k, v in merged_dfs.items():
|
|
| 55 |
merged_dfs[k], release_date_mapping[["key", "Release Date"]], on="key"
|
| 56 |
)
|
| 57 |
|
| 58 |
-
|
| 59 |
-
|
| 60 |
-
|
| 61 |
-
|
| 62 |
-
|
| 63 |
-
|
| 64 |
-
df["
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 65 |
|
| 66 |
|
| 67 |
###################
|
| 68 |
### Plot Data
|
| 69 |
###################
|
| 70 |
|
| 71 |
-
date_updated = elo_results["full"]["last_updated_datetime"].split(" ")[0]
|
| 72 |
-
min_elo_score = df["rating"].min().round()
|
| 73 |
-
max_elo_score = df["rating"].max().round()
|
| 74 |
-
upper_models_per_month = int(
|
| 75 |
-
df.groupby(["Month-Year", "License"])["rating"].apply(lambda x: x.count()).max()
|
| 76 |
-
)
|
| 77 |
|
|
|
|
| 78 |
|
| 79 |
-
|
| 80 |
|
|
|
|
| 81 |
filtered_df = df[(df["rating"] >= min_score)]
|
|
|
|
| 82 |
filtered_df = (
|
| 83 |
filtered_df.groupby(["Month-Year", "License"])
|
| 84 |
.apply(lambda x: x.nlargest(max_models_per_month, "rating"))
|
|
@@ -91,11 +128,11 @@ def build_plot(min_score, max_models_per_month, toggle_annotations):
|
|
| 91 |
y="rating",
|
| 92 |
color="License",
|
| 93 |
hover_name="Model",
|
| 94 |
-
hover_data=["Organization", "License"],
|
| 95 |
trendline="ols",
|
| 96 |
title=f"Proprietary vs Open LLMs (LMSYS Arena ELO as of {date_updated})",
|
| 97 |
labels={"rating": "Arena ELO", "Release Date": "Release Date"},
|
| 98 |
-
height=
|
| 99 |
template="seaborn",
|
| 100 |
)
|
| 101 |
|
|
@@ -143,45 +180,58 @@ with gr.Blocks(
|
|
| 143 |
</div>
|
| 144 |
"""
|
| 145 |
)
|
|
|
|
| 146 |
with gr.Row():
|
| 147 |
-
|
| 148 |
-
|
| 149 |
-
|
| 150 |
-
|
| 151 |
-
|
| 152 |
-
|
| 153 |
-
|
| 154 |
-
|
| 155 |
-
|
| 156 |
-
|
| 157 |
-
|
| 158 |
-
|
| 159 |
-
|
| 160 |
-
|
| 161 |
-
|
| 162 |
-
|
| 163 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 164 |
|
| 165 |
# Show plot
|
| 166 |
plot = gr.Plot()
|
| 167 |
demo.load(
|
| 168 |
fn=build_plot,
|
| 169 |
-
inputs=[min_score, max_models_per_month, toggle_annotations],
|
| 170 |
outputs=plot,
|
| 171 |
)
|
| 172 |
min_score.change(
|
| 173 |
fn=build_plot,
|
| 174 |
-
inputs=[min_score, max_models_per_month, toggle_annotations],
|
| 175 |
outputs=plot,
|
| 176 |
)
|
| 177 |
max_models_per_month.change(
|
| 178 |
fn=build_plot,
|
| 179 |
-
inputs=[min_score, max_models_per_month, toggle_annotations],
|
| 180 |
outputs=plot,
|
| 181 |
)
|
| 182 |
toggle_annotations.change(
|
| 183 |
fn=build_plot,
|
| 184 |
-
inputs=[min_score, max_models_per_month, toggle_annotations],
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 185 |
outputs=plot,
|
| 186 |
)
|
| 187 |
|
|
|
|
| 7 |
from utils import (
|
| 8 |
KEY_TO_CATEGORY_NAME,
|
| 9 |
PROPRIETARY_LICENSES,
|
| 10 |
+
CAT_NAME_TO_EXPLANATION,
|
| 11 |
download_latest_data_from_space,
|
| 12 |
)
|
| 13 |
|
|
|
|
| 56 |
merged_dfs[k], release_date_mapping[["key", "Release Date"]], on="key"
|
| 57 |
)
|
| 58 |
|
| 59 |
+
|
| 60 |
+
# format dataframes
|
| 61 |
+
def format_data(df):
|
| 62 |
+
df["License"] = df["License"].apply(
|
| 63 |
+
lambda x: "Proprietary LLM" if x in PROPRIETARY_LICENSES else "Open LLM"
|
| 64 |
+
)
|
| 65 |
+
df["Release Date"] = pd.to_datetime(df["Release Date"])
|
| 66 |
+
df["Month-Year"] = df["Release Date"].dt.to_period("M")
|
| 67 |
+
df["rating"] = df["rating"].round()
|
| 68 |
+
return df.reset_index(drop=True)
|
| 69 |
+
|
| 70 |
+
|
| 71 |
+
merged_dfs = {k: format_data(v) for k, v in merged_dfs.items()}
|
| 72 |
+
|
| 73 |
+
|
| 74 |
+
# get constants
|
| 75 |
+
filter_ranges = {}
|
| 76 |
+
for k, df in merged_dfs.items():
|
| 77 |
+
filter_ranges[k] = {
|
| 78 |
+
"min_elo_score": df["rating"].min().round(),
|
| 79 |
+
"max_elo_score": df["rating"].max().round(),
|
| 80 |
+
"upper_models_per_month": int(
|
| 81 |
+
df.groupby(["Month-Year", "License"])["rating"]
|
| 82 |
+
.apply(lambda x: x.count())
|
| 83 |
+
.max()
|
| 84 |
+
),
|
| 85 |
+
}
|
| 86 |
+
|
| 87 |
+
min_elo_score = float("inf")
|
| 88 |
+
max_elo_score = float("-inf")
|
| 89 |
+
upper_models_per_month = 0
|
| 90 |
+
|
| 91 |
+
for key, value in filter_ranges.items():
|
| 92 |
+
min_elo_score = min(min_elo_score, value["min_elo_score"])
|
| 93 |
+
max_elo_score = max(max_elo_score, value["max_elo_score"])
|
| 94 |
+
upper_models_per_month = max(
|
| 95 |
+
upper_models_per_month, value["upper_models_per_month"]
|
| 96 |
+
)
|
| 97 |
+
|
| 98 |
+
|
| 99 |
+
date_updated = elo_results["full"]["last_updated_datetime"].split(" ")[0]
|
| 100 |
+
|
| 101 |
+
|
| 102 |
+
def get_data_split(dfs, set_name):
|
| 103 |
+
df = dfs[set_name].copy(deep=True)
|
| 104 |
+
return df.reset_index(drop=True)
|
| 105 |
|
| 106 |
|
| 107 |
###################
|
| 108 |
### Plot Data
|
| 109 |
###################
|
| 110 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 111 |
|
| 112 |
+
def build_plot(min_score, max_models_per_month, toggle_annotations, set_selector):
|
| 113 |
|
| 114 |
+
df = get_data_split(merged_dfs, set_name=set_selector)
|
| 115 |
|
| 116 |
+
# filter data
|
| 117 |
filtered_df = df[(df["rating"] >= min_score)]
|
| 118 |
+
|
| 119 |
filtered_df = (
|
| 120 |
filtered_df.groupby(["Month-Year", "License"])
|
| 121 |
.apply(lambda x: x.nlargest(max_models_per_month, "rating"))
|
|
|
|
| 128 |
y="rating",
|
| 129 |
color="License",
|
| 130 |
hover_name="Model",
|
| 131 |
+
hover_data=["Organization", "License", "Link"],
|
| 132 |
trendline="ols",
|
| 133 |
title=f"Proprietary vs Open LLMs (LMSYS Arena ELO as of {date_updated})",
|
| 134 |
labels={"rating": "Arena ELO", "Release Date": "Release Date"},
|
| 135 |
+
height=800,
|
| 136 |
template="seaborn",
|
| 137 |
)
|
| 138 |
|
|
|
|
| 180 |
</div>
|
| 181 |
"""
|
| 182 |
)
|
| 183 |
+
|
| 184 |
with gr.Row():
|
| 185 |
+
with gr.Column():
|
| 186 |
+
toggle_annotations = gr.Radio(
|
| 187 |
+
choices=[True, False], label="Overlay Best Model Name", value=True
|
| 188 |
+
)
|
| 189 |
+
set_selector = gr.Dropdown(
|
| 190 |
+
choices=list(CAT_NAME_TO_EXPLANATION.keys()),
|
| 191 |
+
label="Select Dataset",
|
| 192 |
+
value="Overall",
|
| 193 |
+
)
|
| 194 |
+
with gr.Column():
|
| 195 |
+
min_score = gr.Slider(
|
| 196 |
+
minimum=min_elo_score,
|
| 197 |
+
maximum=max_elo_score,
|
| 198 |
+
value=(max_elo_score - min_elo_score) * 0.3 + min_elo_score,
|
| 199 |
+
step=50,
|
| 200 |
+
label="Minimum ELO Score",
|
| 201 |
+
)
|
| 202 |
+
max_models_per_month = gr.Slider(
|
| 203 |
+
value=upper_models_per_month - 2,
|
| 204 |
+
minimum=1,
|
| 205 |
+
maximum=upper_models_per_month,
|
| 206 |
+
step=1,
|
| 207 |
+
label="Max Models per Month (per License)",
|
| 208 |
+
)
|
| 209 |
|
| 210 |
# Show plot
|
| 211 |
plot = gr.Plot()
|
| 212 |
demo.load(
|
| 213 |
fn=build_plot,
|
| 214 |
+
inputs=[min_score, max_models_per_month, toggle_annotations, set_selector],
|
| 215 |
outputs=plot,
|
| 216 |
)
|
| 217 |
min_score.change(
|
| 218 |
fn=build_plot,
|
| 219 |
+
inputs=[min_score, max_models_per_month, toggle_annotations, set_selector],
|
| 220 |
outputs=plot,
|
| 221 |
)
|
| 222 |
max_models_per_month.change(
|
| 223 |
fn=build_plot,
|
| 224 |
+
inputs=[min_score, max_models_per_month, toggle_annotations, set_selector],
|
| 225 |
outputs=plot,
|
| 226 |
)
|
| 227 |
toggle_annotations.change(
|
| 228 |
fn=build_plot,
|
| 229 |
+
inputs=[min_score, max_models_per_month, toggle_annotations, set_selector],
|
| 230 |
+
outputs=plot,
|
| 231 |
+
)
|
| 232 |
+
set_selector.change(
|
| 233 |
+
fn=build_plot,
|
| 234 |
+
inputs=[min_score, max_models_per_month, toggle_annotations, set_selector],
|
| 235 |
outputs=plot,
|
| 236 |
)
|
| 237 |
|
dev.ipynb
CHANGED
|
The diff for this file is too large to render.
See raw diff
|
|
|