Spaces:
Runtime error
Runtime error
Commit
Β·
4df8d2a
1
Parent(s):
a97c4f0
add logic to update with new models from elo data
Browse files- app.py +20 -17
- release_date_mapping.json +5 -0
- utils.py +73 -1
app.py
CHANGED
|
@@ -6,10 +6,11 @@ import plotly.express as px
|
|
| 6 |
|
| 7 |
from utils import (
|
| 8 |
KEY_TO_CATEGORY_NAME,
|
| 9 |
-
PROPRIETARY_LICENSES,
|
| 10 |
CAT_NAME_TO_EXPLANATION,
|
| 11 |
download_latest_data_from_space,
|
| 12 |
get_constants,
|
|
|
|
|
|
|
| 13 |
)
|
| 14 |
|
| 15 |
###################
|
|
@@ -36,10 +37,25 @@ latest_leaderboard_file_local = download_latest_data_from_space(
|
|
| 36 |
)
|
| 37 |
leaderboard_df = pd.read_csv(latest_leaderboard_file_local)
|
| 38 |
|
|
|
|
|
|
|
|
|
|
| 39 |
###################
|
| 40 |
### Prepare Data
|
| 41 |
###################
|
| 42 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 43 |
# merge leaderboard data with ELO data
|
| 44 |
merged_dfs = {}
|
| 45 |
for k, v in arena_dfs.items():
|
|
@@ -50,33 +66,18 @@ for k, v in arena_dfs.items():
|
|
| 50 |
)
|
| 51 |
|
| 52 |
# add release dates into the merged data
|
| 53 |
-
release_date_mapping = pd.read_json("release_date_mapping.json", orient="records")
|
| 54 |
for k, v in merged_dfs.items():
|
| 55 |
merged_dfs[k] = pd.merge(
|
| 56 |
merged_dfs[k], release_date_mapping[["key", "Release Date"]], on="key"
|
| 57 |
)
|
| 58 |
|
| 59 |
-
|
| 60 |
# format dataframes
|
| 61 |
-
def format_data(df):
|
| 62 |
-
df["License"] = df["License"].apply(
|
| 63 |
-
lambda x: "Proprietary LLM" if x in PROPRIETARY_LICENSES else "Open LLM"
|
| 64 |
-
)
|
| 65 |
-
df["Release Date"] = pd.to_datetime(df["Release Date"])
|
| 66 |
-
df["Month-Year"] = df["Release Date"].dt.to_period("M")
|
| 67 |
-
df["rating"] = df["rating"].round()
|
| 68 |
-
return df.reset_index(drop=True)
|
| 69 |
-
|
| 70 |
-
|
| 71 |
merged_dfs = {k: format_data(v) for k, v in merged_dfs.items()}
|
| 72 |
|
| 73 |
-
|
| 74 |
# get constants
|
| 75 |
min_elo_score, max_elo_score, upper_models_per_month = get_constants(merged_dfs)
|
| 76 |
-
|
| 77 |
date_updated = elo_results["full"]["last_updated_datetime"].split(" ")[0]
|
| 78 |
|
| 79 |
-
|
| 80 |
###################
|
| 81 |
### Plot Data
|
| 82 |
###################
|
|
@@ -100,6 +101,7 @@ def build_plot(min_score, max_models_per_month, toggle_annotations, set_selector
|
|
| 100 |
.reset_index(drop=True)
|
| 101 |
)
|
| 102 |
|
|
|
|
| 103 |
fig = px.scatter(
|
| 104 |
filtered_df,
|
| 105 |
x="Release Date",
|
|
@@ -153,7 +155,8 @@ with gr.Blocks(
|
|
| 153 |
<h1 style="font-weight: 900; margin-top: 5px;">π¬ Progress Tracker: Open vs. Proprietary LLMs
|
| 154 |
</h1>
|
| 155 |
<p style="text-align: left; margin-top: 10px; margin-bottom: 10px; line-height: 20px;">
|
| 156 |
-
This app visualizes the progress of proprietary and open-source LLMs in the LMSYS Arena ELO leaderboard
|
|
|
|
| 157 |
</p>
|
| 158 |
</div>
|
| 159 |
"""
|
|
|
|
| 6 |
|
| 7 |
from utils import (
|
| 8 |
KEY_TO_CATEGORY_NAME,
|
|
|
|
| 9 |
CAT_NAME_TO_EXPLANATION,
|
| 10 |
download_latest_data_from_space,
|
| 11 |
get_constants,
|
| 12 |
+
update_release_date_mapping,
|
| 13 |
+
format_data,
|
| 14 |
)
|
| 15 |
|
| 16 |
###################
|
|
|
|
| 37 |
)
|
| 38 |
leaderboard_df = pd.read_csv(latest_leaderboard_file_local)
|
| 39 |
|
| 40 |
+
# load release date mapping data
|
| 41 |
+
release_date_mapping = pd.read_json("release_date_mapping.json", orient="records")
|
| 42 |
+
|
| 43 |
###################
|
| 44 |
### Prepare Data
|
| 45 |
###################
|
| 46 |
|
| 47 |
+
# update release date mapping with new models
|
| 48 |
+
# check for new models in ELO data
|
| 49 |
+
new_model_keys_to_add = [
|
| 50 |
+
model
|
| 51 |
+
for model in arena_dfs["Overall"].index.to_list()
|
| 52 |
+
if model not in release_date_mapping["key"].to_list()
|
| 53 |
+
]
|
| 54 |
+
if new_model_keys_to_add:
|
| 55 |
+
release_date_mapping = update_release_date_mapping(
|
| 56 |
+
new_model_keys_to_add, leaderboard_df, release_date_mapping
|
| 57 |
+
)
|
| 58 |
+
|
| 59 |
# merge leaderboard data with ELO data
|
| 60 |
merged_dfs = {}
|
| 61 |
for k, v in arena_dfs.items():
|
|
|
|
| 66 |
)
|
| 67 |
|
| 68 |
# add release dates into the merged data
|
|
|
|
| 69 |
for k, v in merged_dfs.items():
|
| 70 |
merged_dfs[k] = pd.merge(
|
| 71 |
merged_dfs[k], release_date_mapping[["key", "Release Date"]], on="key"
|
| 72 |
)
|
| 73 |
|
|
|
|
| 74 |
# format dataframes
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 75 |
merged_dfs = {k: format_data(v) for k, v in merged_dfs.items()}
|
| 76 |
|
|
|
|
| 77 |
# get constants
|
| 78 |
min_elo_score, max_elo_score, upper_models_per_month = get_constants(merged_dfs)
|
|
|
|
| 79 |
date_updated = elo_results["full"]["last_updated_datetime"].split(" ")[0]
|
| 80 |
|
|
|
|
| 81 |
###################
|
| 82 |
### Plot Data
|
| 83 |
###################
|
|
|
|
| 101 |
.reset_index(drop=True)
|
| 102 |
)
|
| 103 |
|
| 104 |
+
# construct plot
|
| 105 |
fig = px.scatter(
|
| 106 |
filtered_df,
|
| 107 |
x="Release Date",
|
|
|
|
| 155 |
<h1 style="font-weight: 900; margin-top: 5px;">π¬ Progress Tracker: Open vs. Proprietary LLMs
|
| 156 |
</h1>
|
| 157 |
<p style="text-align: left; margin-top: 10px; margin-bottom: 10px; line-height: 20px;">
|
| 158 |
+
This app visualizes the progress of proprietary and open-source LLMs in the LMSYS Arena ELO leaderboard over time.
|
| 159 |
+
The idea is inspired by <a href="https://www.linkedin.com/posts/maxime-labonne_arena-elo-graph-updated-with-new-models-activity-7187062633735368705-u2jB?utm_source=share&utm_medium=member_desktop">this great work</a> from <a href="https://huggingface.co/mlabonne/">Maxime Labonne</a>.
|
| 160 |
</p>
|
| 161 |
</div>
|
| 162 |
"""
|
release_date_mapping.json
CHANGED
|
@@ -453,5 +453,10 @@
|
|
| 453 |
"key": "llama-13b",
|
| 454 |
"Model": "LLaMA-13B",
|
| 455 |
"Release Date": "2023-02-27"
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 456 |
}
|
| 457 |
]
|
|
|
|
| 453 |
"key": "llama-13b",
|
| 454 |
"Model": "LLaMA-13B",
|
| 455 |
"Release Date": "2023-02-27"
|
| 456 |
+
},
|
| 457 |
+
{
|
| 458 |
+
"key": "snowflake-arctic-instruct",
|
| 459 |
+
"Model": "Snowflake Arctic Instruct",
|
| 460 |
+
"Release Date": "2024-04-24"
|
| 461 |
}
|
| 462 |
]
|
utils.py
CHANGED
|
@@ -1,5 +1,9 @@
|
|
| 1 |
-
|
|
|
|
| 2 |
|
|
|
|
|
|
|
|
|
|
| 3 |
from huggingface_hub import HfFileSystem, hf_hub_download
|
| 4 |
|
| 5 |
KEY_TO_CATEGORY_NAME = {
|
|
@@ -95,3 +99,71 @@ def get_constants(dfs):
|
|
| 95 |
upper_models_per_month, value["upper_models_per_month"]
|
| 96 |
)
|
| 97 |
return min_elo_score, max_elo_score, upper_models_per_month
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
import json
|
| 2 |
+
from datetime import datetime
|
| 3 |
|
| 4 |
+
from typing import Literal, List
|
| 5 |
+
|
| 6 |
+
import pandas as pd
|
| 7 |
from huggingface_hub import HfFileSystem, hf_hub_download
|
| 8 |
|
| 9 |
KEY_TO_CATEGORY_NAME = {
|
|
|
|
| 99 |
upper_models_per_month, value["upper_models_per_month"]
|
| 100 |
)
|
| 101 |
return min_elo_score, max_elo_score, upper_models_per_month
|
| 102 |
+
|
| 103 |
+
|
| 104 |
+
def update_release_date_mapping(
|
| 105 |
+
new_model_keys_to_add: List[str],
|
| 106 |
+
leaderboard_df: pd.DataFrame,
|
| 107 |
+
release_date_mapping: pd.DataFrame,
|
| 108 |
+
) -> pd.DataFrame:
|
| 109 |
+
"""
|
| 110 |
+
Update the release date mapping with new model keys.
|
| 111 |
+
|
| 112 |
+
Args:
|
| 113 |
+
new_model_keys_to_add (List[str]): A list of new model keys to add to the release date mapping.
|
| 114 |
+
leaderboard_df (pd.DataFrame): The leaderboard DataFrame containing the model information.
|
| 115 |
+
release_date_mapping (pd.DataFrame): The current release date mapping DataFrame.
|
| 116 |
+
|
| 117 |
+
Returns:
|
| 118 |
+
pd.DataFrame: The updated release date mapping DataFrame.
|
| 119 |
+
"""
|
| 120 |
+
# if any, add those to the release date mapping
|
| 121 |
+
if new_model_keys_to_add:
|
| 122 |
+
for key in new_model_keys_to_add:
|
| 123 |
+
new_entry = {
|
| 124 |
+
"key": key,
|
| 125 |
+
"Model": leaderboard_df[leaderboard_df["key"] == key]["Model"].values[
|
| 126 |
+
0
|
| 127 |
+
],
|
| 128 |
+
"Release Date": datetime.today().strftime("%Y-%m-%d"),
|
| 129 |
+
}
|
| 130 |
+
|
| 131 |
+
with open("release_date_mapping.json", "r") as file:
|
| 132 |
+
data = json.load(file)
|
| 133 |
+
|
| 134 |
+
data.append(new_entry)
|
| 135 |
+
|
| 136 |
+
with open("release_date_mapping.json", "w") as file:
|
| 137 |
+
json.dump(data, file, indent=4)
|
| 138 |
+
|
| 139 |
+
print(f"Added {key} to release_date_mapping.json")
|
| 140 |
+
|
| 141 |
+
# reload the release date mapping
|
| 142 |
+
release_date_mapping = pd.read_json(
|
| 143 |
+
"release_date_mapping.json", orient="records"
|
| 144 |
+
)
|
| 145 |
+
return release_date_mapping
|
| 146 |
+
|
| 147 |
+
|
| 148 |
+
def format_data(df):
|
| 149 |
+
"""
|
| 150 |
+
Formats the given DataFrame by performing the following operations:
|
| 151 |
+
- Converts the 'License' column values to 'Proprietary LLM' if they are in PROPRIETARY_LICENSES, otherwise 'Open LLM'.
|
| 152 |
+
- Converts the 'Release Date' column to datetime format.
|
| 153 |
+
- Adds a new 'Month-Year' column by extracting the month and year from the 'Release Date' column.
|
| 154 |
+
- Rounds the 'rating' column to the nearest integer.
|
| 155 |
+
- Resets the index of the DataFrame.
|
| 156 |
+
|
| 157 |
+
Args:
|
| 158 |
+
df (pandas.DataFrame): The DataFrame to be formatted.
|
| 159 |
+
|
| 160 |
+
Returns:
|
| 161 |
+
pandas.DataFrame: The formatted DataFrame.
|
| 162 |
+
"""
|
| 163 |
+
df["License"] = df["License"].apply(
|
| 164 |
+
lambda x: "Proprietary LLM" if x in PROPRIETARY_LICENSES else "Open LLM"
|
| 165 |
+
)
|
| 166 |
+
df["Release Date"] = pd.to_datetime(df["Release Date"])
|
| 167 |
+
df["Month-Year"] = df["Release Date"].dt.to_period("M")
|
| 168 |
+
df["rating"] = df["rating"].round()
|
| 169 |
+
return df.reset_index(drop=True)
|