Spaces:
Build error
Build error
Debug
Browse files- app.py +33 -23
- milestone3/milestone3.py +29 -13
app.py
CHANGED
|
@@ -18,9 +18,9 @@ def analyze(model_name: str, text: str, top_k=1) -> dict:
|
|
| 18 |
return classifier(text)
|
| 19 |
|
| 20 |
# App title
|
| 21 |
-
st.title("Sentiment Analysis App -
|
| 22 |
st.write("This app is to analyze the sentiments behind a text.")
|
| 23 |
-
st.write("
|
| 24 |
|
| 25 |
# Model hub
|
| 26 |
model_descrip = {
|
|
@@ -34,25 +34,7 @@ model_descrip = {
|
|
| 34 |
Labels: POS; NEU; NEG"
|
| 35 |
}
|
| 36 |
|
| 37 |
-
df = pd.read_csv("/milestone3/comp/test_comment.csv")
|
| 38 |
-
test_texts = df["comment_text"].values
|
| 39 |
-
sample_texts = np.random.choice(test_texts, size=sample_text_num, replace=False)
|
| 40 |
|
| 41 |
-
init_table_dict = {
|
| 42 |
-
"Text": [],
|
| 43 |
-
"Highest Toxicity Class": [],
|
| 44 |
-
"Highest Score": [],
|
| 45 |
-
"Second Highest Toxicity Class": [],
|
| 46 |
-
"Second Highest Score": []
|
| 47 |
-
}
|
| 48 |
-
|
| 49 |
-
for text in sample_texts:
|
| 50 |
-
result = analyze(fine_tuned_model, text, top_k=2)
|
| 51 |
-
init_table_dict["Text"].append(text[:50])
|
| 52 |
-
init_table_dict["Highest Toxicity Class"].append(result[0][0]['label'])
|
| 53 |
-
init_table_dict["Highest Score"].append(result[0][0]['score'])
|
| 54 |
-
init_table_dict["Second Highest Toxicity Class"].append(result[0][1]['label'])
|
| 55 |
-
init_table_dict["Second Highest Score"].append(result[0][1]['score'])
|
| 56 |
|
| 57 |
|
| 58 |
user_input = st.text_input("Enter your text:", value="NYU is the better than Columbia.")
|
|
@@ -73,10 +55,38 @@ if st.button("Analyze"):
|
|
| 73 |
with st.spinner("Hang on.... Analyzing..."):
|
| 74 |
if user_model == fine_tuned_model:
|
| 75 |
result = analyze(user_model, user_input, top_k=2)
|
| 76 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 77 |
|
| 78 |
-
df = pd.DataFrame(init_table_dict)
|
| 79 |
-
st.dataframe(df)
|
| 80 |
|
| 81 |
else:
|
| 82 |
result = analyze(user_model, user_input)
|
|
|
|
| 18 |
return classifier(text)
|
| 19 |
|
| 20 |
# App title
|
| 21 |
+
st.title("Sentiment Analysis App - Milestone3")
|
| 22 |
st.write("This app is to analyze the sentiments behind a text.")
|
| 23 |
+
st.write("You can choose to use my fine-tuned model or pre-trained models.")
|
| 24 |
|
| 25 |
# Model hub
|
| 26 |
model_descrip = {
|
|
|
|
| 34 |
Labels: POS; NEU; NEG"
|
| 35 |
}
|
| 36 |
|
|
|
|
|
|
|
|
|
|
| 37 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 38 |
|
| 39 |
|
| 40 |
user_input = st.text_input("Enter your text:", value="NYU is the better than Columbia.")
|
|
|
|
| 55 |
with st.spinner("Hang on.... Analyzing..."):
|
| 56 |
if user_model == fine_tuned_model:
|
| 57 |
result = analyze(user_model, user_input, top_k=2)
|
| 58 |
+
result_dict = {
|
| 59 |
+
"Text": [user_input],
|
| 60 |
+
"Highest Toxicity Class": [result[0][0]['label']],
|
| 61 |
+
"Highest Score": [result[0][0]['score']],
|
| 62 |
+
"Second Highest Toxicity Class": [result[0][1]['label']],
|
| 63 |
+
"Second Highest Score": [result[0][1]['score']]
|
| 64 |
+
}
|
| 65 |
+
st.dataframe(pd.DataFrame(result_dict))
|
| 66 |
+
if st.button("Click to generate ten sample analysis"):
|
| 67 |
+
df = pd.read_csv("milestone3/comp/test_comment.csv")
|
| 68 |
+
test_texts = df["comment_text"].values
|
| 69 |
+
sample_texts = np.random.choice(test_texts, size=sample_text_num, replace=False)
|
| 70 |
+
|
| 71 |
+
init_table_dict = {
|
| 72 |
+
"Text": [],
|
| 73 |
+
"Highest Toxicity Class": [],
|
| 74 |
+
"Highest Score": [],
|
| 75 |
+
"Second Highest Toxicity Class": [],
|
| 76 |
+
"Second Highest Score": []
|
| 77 |
+
}
|
| 78 |
+
|
| 79 |
+
for text in sample_texts:
|
| 80 |
+
result = analyze(fine_tuned_model, text[:50], top_k=2)
|
| 81 |
+
init_table_dict["Text"].append(text[:50])
|
| 82 |
+
init_table_dict["Highest Toxicity Class"].append(result[0][0]['label'])
|
| 83 |
+
init_table_dict["Highest Score"].append(result[0][0]['score'])
|
| 84 |
+
init_table_dict["Second Highest Toxicity Class"].append(result[0][1]['label'])
|
| 85 |
+
init_table_dict["Second Highest Score"].append(result[0][1]['score'])
|
| 86 |
+
st.dataframe(pd.DataFrame(init_table_dict))
|
| 87 |
+
else:
|
| 88 |
+
st.write("(─‿‿─)")
|
| 89 |
|
|
|
|
|
|
|
| 90 |
|
| 91 |
else:
|
| 92 |
result = analyze(user_model, user_input)
|
milestone3/milestone3.py
CHANGED
|
@@ -1,19 +1,19 @@
|
|
| 1 |
-
|
| 2 |
|
| 3 |
-
|
| 4 |
-
|
| 5 |
-
|
| 6 |
-
|
| 7 |
-
|
| 8 |
-
|
| 9 |
-
|
| 10 |
-
|
| 11 |
|
| 12 |
|
| 13 |
-
|
| 14 |
-
|
| 15 |
|
| 16 |
-
# result = analyze(user_model, user_input, top_k=
|
| 17 |
|
| 18 |
# print(result[0][0]['label'])
|
| 19 |
|
|
@@ -22,4 +22,20 @@ import numpy as np
|
|
| 22 |
df = pd.read_csv("milestone3/comp/test_comment.csv")
|
| 23 |
test_texts = df["comment_text"].values
|
| 24 |
sample_texts = np.random.choice(test_texts, size=10, replace=False)
|
| 25 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
from transformers import pipeline, AutoTokenizer, AutoModelForSequenceClassification
|
| 2 |
|
| 3 |
+
def analyze(model_name: str, text: str, top_k=1) -> dict:
|
| 4 |
+
'''
|
| 5 |
+
Output result of sentiment analysis of a text through a defined model
|
| 6 |
+
'''
|
| 7 |
+
model = AutoModelForSequenceClassification.from_pretrained(model_name)
|
| 8 |
+
tokenizer = AutoTokenizer.from_pretrained(model_name)
|
| 9 |
+
classifier = pipeline("sentiment-analysis", model=model, tokenizer=tokenizer, top_k=top_k)
|
| 10 |
+
return classifier(text)
|
| 11 |
|
| 12 |
|
| 13 |
+
user_input = "Go fuck yourself"
|
| 14 |
+
user_model = "andyqin18/test-finetuned"
|
| 15 |
|
| 16 |
+
# result = analyze(user_model, user_input, top_k=2)
|
| 17 |
|
| 18 |
# print(result[0][0]['label'])
|
| 19 |
|
|
|
|
| 22 |
df = pd.read_csv("milestone3/comp/test_comment.csv")
|
| 23 |
test_texts = df["comment_text"].values
|
| 24 |
sample_texts = np.random.choice(test_texts, size=10, replace=False)
|
| 25 |
+
init_table_dict = {
|
| 26 |
+
"Text": [],
|
| 27 |
+
"Highest Toxicity Class": [],
|
| 28 |
+
"Highest Score": [],
|
| 29 |
+
"Second Highest Toxicity Class": [],
|
| 30 |
+
"Second Highest Score": []
|
| 31 |
+
}
|
| 32 |
+
|
| 33 |
+
for text in sample_texts:
|
| 34 |
+
result = analyze(user_model, text, top_k=2)
|
| 35 |
+
init_table_dict["Text"].append(text[:50])
|
| 36 |
+
init_table_dict["Highest Toxicity Class"].append(result[0][0]['label'])
|
| 37 |
+
init_table_dict["Highest Score"].append(result[0][0]['score'])
|
| 38 |
+
init_table_dict["Second Highest Toxicity Class"].append(result[0][1]['label'])
|
| 39 |
+
init_table_dict["Second Highest Score"].append(result[0][1]['score'])
|
| 40 |
+
|
| 41 |
+
print(init_table_dict)
|