Spaces:
Sleeping
Sleeping
Update crawler.py
Browse files- crawler.py +91 -310
crawler.py
CHANGED
|
@@ -1,320 +1,101 @@
|
|
| 1 |
-
|
| 2 |
-
|
| 3 |
-
|
| 4 |
-
from
|
| 5 |
-
|
| 6 |
-
|
| 7 |
-
|
| 8 |
-
|
| 9 |
-
|
| 10 |
-
|
| 11 |
-
|
| 12 |
-
|
| 13 |
-
|
| 14 |
-
#
|
| 15 |
-
|
| 16 |
-
|
| 17 |
-
|
| 18 |
-
|
| 19 |
-
)
|
| 20 |
-
|
| 21 |
-
|
| 22 |
-
|
| 23 |
-
|
| 24 |
-
|
| 25 |
-
|
| 26 |
-
|
| 27 |
-
|
| 28 |
-
|
| 29 |
-
|
| 30 |
-
|
| 31 |
-
|
| 32 |
-
|
| 33 |
-
|
| 34 |
-
|
| 35 |
-
|
| 36 |
-
|
| 37 |
-
|
| 38 |
-
|
| 39 |
-
|
| 40 |
-
|
| 41 |
-
|
| 42 |
-
|
| 43 |
-
|
| 44 |
-
|
| 45 |
-
|
| 46 |
-
|
| 47 |
-
|
| 48 |
-
|
| 49 |
-
#
|
| 50 |
-
|
| 51 |
-
|
| 52 |
-
#
|
| 53 |
-
#
|
| 54 |
-
# b_norm = b_norm.reshape(1, -1)
|
| 55 |
-
# similarity_score = cosine_similarity(a_norm, b_norm)
|
| 56 |
-
|
| 57 |
-
# # Return the similarity score (assuming you want the average of the similarities across the tokens)
|
| 58 |
-
# return similarity_score # Scalar value
|
| 59 |
-
|
| 60 |
-
|
| 61 |
-
|
| 62 |
-
# def get_match_scores( message: str, query: str, answers: list[dict[str, object]] ):
|
| 63 |
-
# start = time.time()
|
| 64 |
-
# max_processes = 4
|
| 65 |
-
# with multiprocessing.Pool(processes=max_processes) as pool:
|
| 66 |
-
# scores = pool.map(cal_score, [[answer['questionDetails'], message] for answer in answers])
|
| 67 |
-
# print(f"Time taken to compare: {time.time() - start} seconds")
|
| 68 |
-
# print("Scores: ", scores)
|
| 69 |
-
# return scores
|
| 70 |
-
|
| 71 |
-
def get_naver_answers( message: str ):
|
| 72 |
-
print(">>> Starting naver extraction...")
|
| 73 |
-
print("Question: ", message)
|
| 74 |
-
naver_start_time = time.time()
|
| 75 |
-
response = gemini_client.models.generate_content(
|
| 76 |
-
model = genai_model,
|
| 77 |
-
contents=f"{message}\n 위의 내용을 짧은 제목으로 요약합니다. 제목만 보여주세요. 대답하지 마세요. 한국어로만 답변해주세요!!!",
|
| 78 |
-
)
|
| 79 |
-
query = response.text
|
| 80 |
-
print( "Query: ", query)
|
| 81 |
-
|
| 82 |
-
context = get_answers( query )
|
| 83 |
-
|
| 84 |
-
sorted_answers = ['. '.join(answer['answers']) for answer in context]
|
| 85 |
-
naver_end_time = time.time()
|
| 86 |
-
print(f"Time taken to extract from Naver: { naver_end_time - naver_start_time } seconds")
|
| 87 |
-
document = '\n'.join(sorted_answers)
|
| 88 |
-
return document, naver_end_time - naver_start_time
|
| 89 |
-
|
| 90 |
-
def get_qwen_big_answer( message: str ):
|
| 91 |
-
print(">>> Starting Qwen 72B extraction...")
|
| 92 |
-
qwen_start_time = time.time()
|
| 93 |
-
response = together_client.chat.completions.create(
|
| 94 |
-
model="Qwen/Qwen2.5-72B-Instruct-Turbo",
|
| 95 |
-
messages=[
|
| 96 |
-
{"role": "system", "content": "You are a helpful question-answer, CONCISE conversation assistant that answers in Korean."},
|
| 97 |
-
{"role": "user", "content": message}
|
| 98 |
-
]
|
| 99 |
-
)
|
| 100 |
-
|
| 101 |
-
qwen_end_time = time.time()
|
| 102 |
-
print(f"Time taken to extract from Qwen: { qwen_end_time - qwen_start_time } seconds")
|
| 103 |
-
return response.choices[0].message.content, qwen_end_time - qwen_start_time
|
| 104 |
-
|
| 105 |
-
def get_qwen_small_answer( message: str ):
|
| 106 |
-
print(">>> Starting Qwen 7B extraction...")
|
| 107 |
-
qwen_start_time = time.time()
|
| 108 |
-
response = together_client.chat.completions.create(
|
| 109 |
-
model="Qwen/Qwen2.5-7B-Instruct-Turbo",
|
| 110 |
-
messages=[
|
| 111 |
-
{"role": "system", "content": "You are a helpful question-answer, conversation assistant that answers in Korean. Your responses should sound human-like."},
|
| 112 |
-
{"role": "user", "content": message}
|
| 113 |
-
],
|
| 114 |
-
max_tokens = None
|
| 115 |
-
#TODO: Change the messages option
|
| 116 |
-
)
|
| 117 |
-
qwen_end_time = time.time()
|
| 118 |
-
print(f"Time taken to extract from Qwen: { qwen_end_time - qwen_start_time } seconds")
|
| 119 |
-
return response.choices[0].message.content, qwen_end_time - qwen_start_time
|
| 120 |
-
|
| 121 |
-
def get_llama_small_answer( message: str ):
|
| 122 |
-
print(">>> Starting Llama 3.1 8B extraction...")
|
| 123 |
-
llama_start_time = time.time()
|
| 124 |
-
response = together_client.chat.completions.create(
|
| 125 |
-
model="meta-llama/Meta-Llama-3.1-8B-Instruct-Turbo",
|
| 126 |
-
messages=[
|
| 127 |
-
{"role": "system", "content": "You are an artificial intelligence assistant and you need to engage in a helpful, CONCISE, polite question-answer conversation with a user."},
|
| 128 |
-
{
|
| 129 |
-
"role": "user",
|
| 130 |
-
"content": message
|
| 131 |
-
}
|
| 132 |
-
]
|
| 133 |
-
)
|
| 134 |
-
llama_end_time = time.time()
|
| 135 |
-
print(f"Time taken to extract from Llama: { llama_end_time - llama_start_time } seconds")
|
| 136 |
-
return response.choices[0].message.content, llama_end_time - llama_start_time
|
| 137 |
-
|
| 138 |
-
def get_llama_big_answer( message: str ):
|
| 139 |
-
print(">>> Starting Llama 3.1 70B extraction...")
|
| 140 |
-
llama_start_time = time.time()
|
| 141 |
-
response = together_client.chat.completions.create(
|
| 142 |
-
model="meta-llama/Meta-Llama-3.1-70B-Instruct-Turbo",
|
| 143 |
-
messages=[
|
| 144 |
-
{"role": "system", "content": "You are an artificial intelligence assistant and you need to engage in a helpful, CONCISE, polite question-answer conversation with a user."},
|
| 145 |
-
{
|
| 146 |
-
"role": "user",
|
| 147 |
-
"content": message
|
| 148 |
-
}
|
| 149 |
-
]
|
| 150 |
-
)
|
| 151 |
-
llama_end_time = time.time()
|
| 152 |
-
print(f"Time taken to extract from Llama: { llama_end_time - llama_start_time } seconds")
|
| 153 |
-
return response.choices[0].message.content, llama_end_time - llama_start_time
|
| 154 |
-
|
| 155 |
-
|
| 156 |
-
def get_gemini_answer( message: str ):
|
| 157 |
-
print(">>> Starting gemini extraction...")
|
| 158 |
-
gemini_start_time = time.time()
|
| 159 |
-
response = gemini_client.models.generate_content(
|
| 160 |
-
model = genai_model,
|
| 161 |
-
contents=message,
|
| 162 |
-
)
|
| 163 |
-
gemini_end_time = time.time()
|
| 164 |
-
print(f"Time taken to extract from Gemini: { gemini_end_time - gemini_start_time } seconds")
|
| 165 |
-
return response.candidates[0].content, gemini_end_time - gemini_start_time
|
| 166 |
-
|
| 167 |
-
# def get_perplexity_answer( message: str ):
|
| 168 |
-
# print(">>> Starting perplexity extraction...")
|
| 169 |
-
# perplexity_start_time = time.time()
|
| 170 |
-
# messages = [
|
| 171 |
-
# {
|
| 172 |
-
# "role": "system",
|
| 173 |
-
# "content": (
|
| 174 |
-
# "You are an artificial intelligence assistant and you need to "
|
| 175 |
-
# "engage in a helpful, CONCISE, polite question-answer conversation with a user."
|
| 176 |
-
# ),
|
| 177 |
-
# },
|
| 178 |
-
# {
|
| 179 |
-
# "role": "user",
|
| 180 |
-
# "content": (
|
| 181 |
-
# message
|
| 182 |
-
# ),
|
| 183 |
-
# },
|
| 184 |
-
# ]
|
| 185 |
-
# response = perplexity_client.chat.completions.create(
|
| 186 |
-
# model="llama-3.1-sonar-small-128k-online",
|
| 187 |
-
# messages=messages
|
| 188 |
-
# )
|
| 189 |
-
# perplexity_end_time = time.time()
|
| 190 |
-
# print(f"Time taken to extract from Perplexity: { perplexity_end_time - perplexity_start_time } seconds")
|
| 191 |
-
# return response.choices[0].message.content, perplexity_end_time - perplexity_start_time
|
| 192 |
-
|
| 193 |
-
def get_gpt_answer( message: str ):
|
| 194 |
-
print(">>> Starting GPT extraction...")
|
| 195 |
-
gpt_start_time = time.time()
|
| 196 |
-
completion = gpt_client.chat.completions.create(
|
| 197 |
-
model="gpt-4o-mini",
|
| 198 |
-
messages=[
|
| 199 |
-
{"role": "system", "content": "You are a helpful assistant that gives short answers and nothing extra."},
|
| 200 |
-
{
|
| 201 |
-
"role": "user",
|
| 202 |
-
"content": message
|
| 203 |
-
}
|
| 204 |
-
]
|
| 205 |
-
)
|
| 206 |
-
gpt_end_time = time.time()
|
| 207 |
-
print(f"Time taken to extract from GPT: { gpt_end_time - gpt_start_time } seconds")
|
| 208 |
-
return completion.choices[0].message.content, gpt_end_time - gpt_start_time
|
| 209 |
-
|
| 210 |
-
def compare_answers(message: str):
|
| 211 |
-
methods = [
|
| 212 |
-
("Qwen Big (72B)", get_qwen_big_answer),
|
| 213 |
-
("Qwen Small (7B)", get_qwen_small_answer),
|
| 214 |
-
("Llama Small (8B)", get_llama_small_answer),
|
| 215 |
-
("Llama Big (70B)", get_llama_big_answer),
|
| 216 |
-
("Gemini-2.0-Flash", get_gemini_answer),
|
| 217 |
-
# ("Perplexity", get_perplexity_answer),
|
| 218 |
-
("GPT (4o-mini)", get_gpt_answer)
|
| 219 |
-
]
|
| 220 |
|
| 221 |
results = []
|
| 222 |
-
|
| 223 |
-
|
| 224 |
-
|
| 225 |
-
|
| 226 |
-
|
| 227 |
-
for method_name, method in methods:
|
| 228 |
-
answer, time_taken = method(content)
|
| 229 |
-
results.append({
|
| 230 |
-
"Method": f"Naver + ({method_name})",
|
| 231 |
-
"Question": message,
|
| 232 |
-
"Answer": answer,
|
| 233 |
-
"Time Taken": naver_time_taken + time_taken
|
| 234 |
-
})
|
| 235 |
-
|
| 236 |
-
print("Starting the comparison between extractors/summarizers...")
|
| 237 |
-
for method_name, method in methods:
|
| 238 |
-
additional_docs, time_taken = method(message)
|
| 239 |
-
results.append({
|
| 240 |
-
"Method": method_name,
|
| 241 |
-
"Question": message,
|
| 242 |
-
"Answer": additional_docs,
|
| 243 |
-
"Time Taken": time_taken
|
| 244 |
-
})
|
| 245 |
-
content += f'\n{additional_docs}'
|
| 246 |
-
time_taken += naver_time_taken
|
| 247 |
-
for summarizer_name, summarizer in methods:
|
| 248 |
-
answer, answer_time = summarizer(content)
|
| 249 |
-
results.append({
|
| 250 |
-
"Method": f"Naver + {method_name} + ({summarizer_name})",
|
| 251 |
-
"Question": message,
|
| 252 |
-
"Answer": answer,
|
| 253 |
-
"Time Taken": time_taken + answer_time
|
| 254 |
-
})
|
| 255 |
return results
|
| 256 |
|
| 257 |
-
def
|
| 258 |
-
|
| 259 |
-
|
| 260 |
-
|
| 261 |
-
|
| 262 |
-
|
| 263 |
-
|
| 264 |
-
|
| 265 |
-
|
| 266 |
-
|
| 267 |
-
|
| 268 |
-
|
| 269 |
-
|
| 270 |
-
|
| 271 |
-
|
| 272 |
-
|
| 273 |
-
|
| 274 |
-
start_time = time.time()
|
| 275 |
-
content += "\n Naver 문서: " + naver_docs
|
| 276 |
-
|
| 277 |
-
completion = gpt_client.chat.completions.create(
|
| 278 |
-
model="gpt-4o-mini",
|
| 279 |
-
messages=[
|
| 280 |
-
{"role": "system", "content": "You are a helpful assistant that gives detailed answers only in korean."},
|
| 281 |
-
{
|
| 282 |
-
"role": "user",
|
| 283 |
-
"content": message
|
| 284 |
-
}
|
| 285 |
-
]
|
| 286 |
-
)
|
| 287 |
-
gpt_resp = completion.choices[0].message.content
|
| 288 |
-
content += "\n 다른 문서: " + gpt_resp
|
| 289 |
|
| 290 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
| 291 |
|
| 292 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 293 |
|
| 294 |
-
print("-"*70)
|
| 295 |
-
print("Question: ", message)
|
| 296 |
-
print("Answer: ", answer)
|
| 297 |
-
time_taken = time.time() - start_time
|
| 298 |
-
print("Time taken to summarize: ", time_taken)
|
| 299 |
-
return answer
|
| 300 |
-
|
| 301 |
|
| 302 |
-
if __name__ == "__main__":
|
| 303 |
-
# multiprocessing.set_start_method("fork", force=True)
|
| 304 |
-
# if multiprocessing.get_start_method(allow_none=True) is None:
|
| 305 |
-
# multiprocessing.set_start_method("fork")
|
| 306 |
-
with gr.ChatInterface( fn=chatFunction, type="messages" ) as demo: pass
|
| 307 |
-
demo.launch(share=True)
|
| 308 |
-
# with open("test_questions.txt", "r") as f:
|
| 309 |
-
# if os.path.exists("comparison_results.csv"):
|
| 310 |
-
# if input("Do you want to delete the former results? (y/n): ") == "y":
|
| 311 |
-
# os.remove("comparison_results.csv")
|
| 312 |
-
# questions = f.readlines()
|
| 313 |
-
# print(questions)
|
| 314 |
-
# for idx, question in enumerate(questions):
|
| 315 |
-
# print(" -> Starting the question number: ", idx)
|
| 316 |
-
# results = compare_answers(question)
|
| 317 |
-
# df = pd.DataFrame(results)
|
| 318 |
-
# df.to_csv("comparison_results.csv", mode='a', index=False)
|
| 319 |
|
| 320 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
from bs4 import BeautifulSoup
|
| 2 |
+
import re
|
| 3 |
+
import requests as r
|
| 4 |
+
from html2text import html2text
|
| 5 |
+
import tqdm
|
| 6 |
+
|
| 7 |
+
def process_url(url):
|
| 8 |
+
"""Process a single URL to fetch answers."""
|
| 9 |
+
try:
|
| 10 |
+
response = r.get(url)
|
| 11 |
+
soup = BeautifulSoup(response.text, "html.parser")
|
| 12 |
+
# answers = []
|
| 13 |
+
# for idx in range(1, 100):
|
| 14 |
+
# answer = soup.find('div', {'id': f'answer_{idx}'})
|
| 15 |
+
# if answer:
|
| 16 |
+
# answers.append(answer)
|
| 17 |
+
# else:
|
| 18 |
+
# break
|
| 19 |
+
answers = soup.find_all('div', {'id': re.compile(r'answer_\d+')})
|
| 20 |
+
answers = [html2text(str(answer.find('div', {'class': "answerDetail"}).prettify()))
|
| 21 |
+
for answer in answers if answer.find('div', {'class': "answerDetail"})]
|
| 22 |
+
title = soup.find('div', {'class': 'endTitleSection'}).text.strip()
|
| 23 |
+
questionDetails = soup.find('div', {'class': 'questionDetail'}).text.strip()
|
| 24 |
+
# print("Question: ", questionDetails, '\n')
|
| 25 |
+
title = title.replace("질문", '').strip()
|
| 26 |
+
print("Answers extracted from: \n", url)
|
| 27 |
+
print(len(answers))
|
| 28 |
+
print('-'*60)
|
| 29 |
+
return {
|
| 30 |
+
"title": title,
|
| 31 |
+
"questionDetails": questionDetails,
|
| 32 |
+
"url": url,
|
| 33 |
+
"answers": answers
|
| 34 |
+
}
|
| 35 |
+
except Exception as e:
|
| 36 |
+
print(f"Error processing URL {url}: {e}")
|
| 37 |
+
with open('error_urls.txt', 'w') as f:
|
| 38 |
+
f.write(url + '\n')
|
| 39 |
+
return {"title": '', "questionDetails": '', "url": url, "answers": ''}
|
| 40 |
+
|
| 41 |
+
def get_answers(results_a_elements, query):
|
| 42 |
+
"""Fetch answers for all the extracted result links."""
|
| 43 |
+
if not results_a_elements:
|
| 44 |
+
print("No results found.")
|
| 45 |
+
return []
|
| 46 |
+
|
| 47 |
+
print("Result links extracted: ", len(results_a_elements))
|
| 48 |
+
|
| 49 |
+
# Limit the number of parallel processes for better resource management
|
| 50 |
+
# max_processes = 4
|
| 51 |
+
|
| 52 |
+
# with multiprocessing.Pool(processes=max_processes) as pool:
|
| 53 |
+
# results = pool.map(process_url, results_a_elements)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 54 |
|
| 55 |
results = []
|
| 56 |
+
# answer_count = 0
|
| 57 |
+
for url in tqdm.tqdm(results_a_elements):
|
| 58 |
+
res = process_url(url)
|
| 59 |
+
results.append(res)
|
| 60 |
+
# answer_count += len(res['answers'])
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 61 |
return results
|
| 62 |
|
| 63 |
+
def get_search_results(query, num_pages):
|
| 64 |
+
"""Fetch search results for the given query from Naver 지식in."""
|
| 65 |
+
results = []
|
| 66 |
+
for page in range(1, num_pages + 1):
|
| 67 |
+
url = f"https://kin.naver.com/search/list.naver?query={query}&page={page}"
|
| 68 |
+
print("Starting the scraping process for:\n", url)
|
| 69 |
+
|
| 70 |
+
try:
|
| 71 |
+
response = r.get(url)
|
| 72 |
+
soup = BeautifulSoup(response.text, "html.parser")
|
| 73 |
+
results_a_elements = soup.find("ul", {"class": "basic1"}).find_all("a", {"class": "_searchListTitleAnchor"})
|
| 74 |
+
results_a_elements = [a.get('href') for a in results_a_elements if a.get("href")]
|
| 75 |
+
results += results_a_elements
|
| 76 |
+
except Exception as e:
|
| 77 |
+
print(f"Error while fetching search results: {e}")
|
| 78 |
+
return results
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 79 |
|
| 80 |
+
def extract_data(query, num_pages=150) -> list[dict[str, object]]:
|
| 81 |
+
results_a_elements = get_search_results(query, num_pages)
|
| 82 |
+
answers = get_answers(results_a_elements, query)
|
| 83 |
+
print("Total answers collected:", len(answers))
|
| 84 |
+
return answers
|
| 85 |
|
| 86 |
+
# if __name__ == "__main__":
|
| 87 |
+
# start = time.time()
|
| 88 |
+
# query = "장래희망, 인공지능 개발자/연구원, 파이썬, 중학생 수준, 파이썬 설치, 도서 추천"
|
| 89 |
+
# answers = process_query(query)
|
| 90 |
+
# print("Total answers collected:", len(answers))
|
| 91 |
+
# print("Time taken: ", time.time() - start)
|
| 92 |
+
# # print(answers)
|
| 93 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 94 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 95 |
|
| 96 |
|
| 97 |
+
# AJAX URL:
|
| 98 |
+
# https://kin.naver.com/ajax/detail/answerList.naver?
|
| 99 |
+
# dirId=401030201&docId=292159869
|
| 100 |
+
# &answerSortType=DEFAULT&answerViewType=DETAIL
|
| 101 |
+
# &answerNo=&page=2&count=5&_=1736131792605
|