Spaces:
Running
on
Zero
Running
on
Zero
Upload infer.py
Browse files
infer.py
CHANGED
|
@@ -1,36 +1,24 @@
|
|
|
|
|
| 1 |
import os
|
| 2 |
import torch
|
| 3 |
-
from transformers import
|
| 4 |
-
|
| 5 |
-
Qwen2_5_VLForConditionalGeneration,
|
| 6 |
-
TextIteratorStreamer,
|
| 7 |
-
)
|
| 8 |
-
from transformers.generation.logits_process import LogitsProcessor
|
| 9 |
from qwen_vl_utils import process_vision_info
|
| 10 |
from threading import Thread
|
| 11 |
|
| 12 |
|
| 13 |
-
class _NanSafeLogitsProcessor(LogitsProcessor):
|
| 14 |
-
def __call__(self, input_ids: torch.LongTensor, scores: torch.FloatTensor) -> torch.FloatTensor:
|
| 15 |
-
scores = torch.nan_to_num(scores, neginf=-1e4, posinf=1e4)
|
| 16 |
-
scores.clamp_(min=-1e4, max=1e4)
|
| 17 |
-
return scores
|
| 18 |
-
|
| 19 |
-
|
| 20 |
class MiMoVLInfer:
|
| 21 |
def __init__(self, checkpoint_path, **kwargs):
|
|
|
|
| 22 |
self.model = Qwen2_5_VLForConditionalGeneration.from_pretrained(
|
| 23 |
checkpoint_path,
|
| 24 |
-
torch_dtype=
|
| 25 |
device_map={"": "cpu"},
|
| 26 |
-
attn_implementation="eager",
|
| 27 |
trust_remote_code=True,
|
| 28 |
).eval()
|
| 29 |
self.processor = AutoProcessor.from_pretrained(checkpoint_path, trust_remote_code=True)
|
| 30 |
self._on_cuda = False
|
| 31 |
|
| 32 |
-
torch.set_float32_matmul_precision("high")
|
| 33 |
-
|
| 34 |
def to_device(self, device: str):
|
| 35 |
if device == "cuda" and not self._on_cuda:
|
| 36 |
self.model.to("cuda")
|
|
@@ -42,67 +30,55 @@ class MiMoVLInfer:
|
|
| 42 |
def __call__(self, inputs: dict, history: list = [], temperature: float = 1.0):
|
| 43 |
messages = self.construct_messages(inputs)
|
| 44 |
updated_history = history + messages
|
| 45 |
-
|
| 46 |
-
prompt = self.processor.apply_chat_template(
|
| 47 |
-
updated_history, tokenize=False, add_generation_prompt=True
|
| 48 |
-
)
|
| 49 |
image_inputs, video_inputs = process_vision_info(updated_history)
|
| 50 |
|
| 51 |
model_inputs = self.processor(
|
| 52 |
-
text=[
|
| 53 |
-
images=image_inputs,
|
| 54 |
-
videos=video_inputs,
|
| 55 |
-
padding=True,
|
| 56 |
-
return_tensors="pt",
|
| 57 |
).to(self.model.device)
|
| 58 |
|
| 59 |
tokenizer = self.processor.tokenizer
|
| 60 |
-
streamer = TextIteratorStreamer(
|
| 61 |
-
tokenizer, timeout=60.0, skip_prompt=True, skip_special_tokens=True
|
| 62 |
-
)
|
| 63 |
|
|
|
|
| 64 |
temp = float(temperature or 0.0)
|
| 65 |
do_sample = temp > 1e-3
|
| 66 |
-
|
| 67 |
-
"do_sample": True,
|
| 68 |
-
|
| 69 |
-
"
|
| 70 |
-
}
|
| 71 |
-
|
| 72 |
-
max_new = int(os.getenv("MAX_NEW_TOKENS", "768"))
|
| 73 |
|
| 74 |
gen_kwargs = {
|
| 75 |
-
|
| 76 |
-
"max_new_tokens": max_new,
|
| 77 |
"streamer": streamer,
|
| 78 |
-
"
|
| 79 |
-
"
|
| 80 |
-
**
|
|
|
|
| 81 |
}
|
| 82 |
|
| 83 |
thread = Thread(target=self.model.generate, kwargs=gen_kwargs, daemon=True)
|
| 84 |
thread.start()
|
| 85 |
-
|
| 86 |
-
|
| 87 |
-
|
| 88 |
-
|
| 89 |
-
|
| 90 |
-
|
| 91 |
-
"content": [{"type": "text", "text": partial}]
|
| 92 |
}]
|
| 93 |
|
| 94 |
def _is_video_file(self, filename):
|
| 95 |
return any(filename.lower().endswith(ext) for ext in
|
| 96 |
-
[
|
| 97 |
|
| 98 |
def construct_messages(self, inputs: dict) -> list:
|
| 99 |
content = []
|
| 100 |
-
for path in inputs.get(
|
| 101 |
if self._is_video_file(path):
|
| 102 |
-
content.append({"type": "video", "video": f
|
| 103 |
else:
|
| 104 |
-
content.append({"type": "image", "image": f
|
| 105 |
-
|
| 106 |
-
if
|
| 107 |
-
content.append({"type": "text", "text":
|
| 108 |
-
return [{"role": "user", "content": content}]
|
|
|
|
| 1 |
+
# modified from https://github.com/XiaomiMiMo/MiMo-VL/tree/main/infer.py
|
| 2 |
import os
|
| 3 |
import torch
|
| 4 |
+
from transformers import AutoProcessor, Qwen2_5_VLForConditionalGeneration, TextIteratorStreamer
|
| 5 |
+
from transformers.generation.stopping_criteria import EosTokenCriteria, StoppingCriteriaList
|
|
|
|
|
|
|
|
|
|
|
|
|
| 6 |
from qwen_vl_utils import process_vision_info
|
| 7 |
from threading import Thread
|
| 8 |
|
| 9 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 10 |
class MiMoVLInfer:
|
| 11 |
def __init__(self, checkpoint_path, **kwargs):
|
| 12 |
+
dtype = torch.float16
|
| 13 |
self.model = Qwen2_5_VLForConditionalGeneration.from_pretrained(
|
| 14 |
checkpoint_path,
|
| 15 |
+
torch_dtype=dtype,
|
| 16 |
device_map={"": "cpu"},
|
|
|
|
| 17 |
trust_remote_code=True,
|
| 18 |
).eval()
|
| 19 |
self.processor = AutoProcessor.from_pretrained(checkpoint_path, trust_remote_code=True)
|
| 20 |
self._on_cuda = False
|
| 21 |
|
|
|
|
|
|
|
| 22 |
def to_device(self, device: str):
|
| 23 |
if device == "cuda" and not self._on_cuda:
|
| 24 |
self.model.to("cuda")
|
|
|
|
| 30 |
def __call__(self, inputs: dict, history: list = [], temperature: float = 1.0):
|
| 31 |
messages = self.construct_messages(inputs)
|
| 32 |
updated_history = history + messages
|
| 33 |
+
text = self.processor.apply_chat_template(updated_history, tokenize=False, add_generation_prompt=True)
|
|
|
|
|
|
|
|
|
|
| 34 |
image_inputs, video_inputs = process_vision_info(updated_history)
|
| 35 |
|
| 36 |
model_inputs = self.processor(
|
| 37 |
+
text=[text], images=image_inputs, videos=video_inputs, padding=True, return_tensors='pt'
|
|
|
|
|
|
|
|
|
|
|
|
|
| 38 |
).to(self.model.device)
|
| 39 |
|
| 40 |
tokenizer = self.processor.tokenizer
|
| 41 |
+
streamer = TextIteratorStreamer(tokenizer, timeout=60.0, skip_prompt=True, skip_special_tokens=True)
|
|
|
|
|
|
|
| 42 |
|
| 43 |
+
max_new = int(os.getenv("MAX_NEW_TOKENS", "1024"))
|
| 44 |
temp = float(temperature or 0.0)
|
| 45 |
do_sample = temp > 1e-3
|
| 46 |
+
if do_sample:
|
| 47 |
+
samp_args = {"do_sample": True, "temperature": max(temp, 0.01), "top_p": 0.95}
|
| 48 |
+
else:
|
| 49 |
+
samp_args = {"do_sample": False}
|
|
|
|
|
|
|
|
|
|
| 50 |
|
| 51 |
gen_kwargs = {
|
| 52 |
+
"max_new_tokens": 1024,
|
|
|
|
| 53 |
"streamer": streamer,
|
| 54 |
+
"stopping_criteria": StoppingCriteriaList([EosTokenCriteria(eos_token_id=self.model.config.eos_token_id)]),
|
| 55 |
+
"pad_token_id": self.model.config.eos_token_id,
|
| 56 |
+
**model_inputs,
|
| 57 |
+
**samp_args,
|
| 58 |
}
|
| 59 |
|
| 60 |
thread = Thread(target=self.model.generate, kwargs=gen_kwargs, daemon=True)
|
| 61 |
thread.start()
|
| 62 |
+
partial_response = ""
|
| 63 |
+
for new_text in streamer:
|
| 64 |
+
partial_response += new_text
|
| 65 |
+
yield partial_response, updated_history + [{
|
| 66 |
+
'role': 'assistant',
|
| 67 |
+
'content': [{'type': 'text', 'text': partial_response}]
|
|
|
|
| 68 |
}]
|
| 69 |
|
| 70 |
def _is_video_file(self, filename):
|
| 71 |
return any(filename.lower().endswith(ext) for ext in
|
| 72 |
+
['.mp4', '.avi', '.mkv', '.mov', '.wmv', '.flv', '.webm', '.mpeg'])
|
| 73 |
|
| 74 |
def construct_messages(self, inputs: dict) -> list:
|
| 75 |
content = []
|
| 76 |
+
for path in inputs.get('files', []):
|
| 77 |
if self._is_video_file(path):
|
| 78 |
+
content.append({"type": "video", "video": f'file://{path}'})
|
| 79 |
else:
|
| 80 |
+
content.append({"type": "image", "image": f'file://{path}'})
|
| 81 |
+
query = inputs.get('text', '')
|
| 82 |
+
if query:
|
| 83 |
+
content.append({"type": "text", "text": query})
|
| 84 |
+
return [{"role": "user", "content": content}]
|