Spaces:
				
			
			
	
			
			
		Running
		
			on 
			
			Zero
	
	
	
			
			
	
	
	
	
		
		
		Running
		
			on 
			
			Zero
	Update app.py
Browse files
    	
        app.py
    CHANGED
    
    | @@ -4,6 +4,7 @@ import numpy as np | |
| 4 | 
             
            import librosa
         | 
| 5 | 
             
            from torchmetrics.functional.audio.nisqa import non_intrusive_speech_quality_assessment as tm_nisqa
         | 
| 6 | 
             
            import spaces
         | 
|  | |
| 7 |  | 
| 8 | 
             
            SR = 16000
         | 
| 9 |  | 
| @@ -52,15 +53,18 @@ def predict_nisqa(audio): | |
| 52 | 
             
                    ("Loudness", loudness, label_dim(loudness), explain_dim("Loudness")),
         | 
| 53 | 
             
                ]
         | 
| 54 |  | 
| 55 | 
            -
                 | 
| 56 | 
            -
                     | 
| 57 | 
            -
             | 
| 58 | 
            -
             | 
| 59 | 
            -
             | 
| 60 | 
            -
             | 
| 61 | 
            -
             | 
| 62 | 
            -
             | 
| 63 | 
            -
                 | 
|  | |
|  | |
|  | |
| 64 |  | 
| 65 | 
             
            with gr.Blocks(title="NISQA Speech Quality (MOS) Demo") as demo:
         | 
| 66 | 
             
                gr.Markdown(
         | 
| @@ -71,27 +75,19 @@ with gr.Blocks(title="NISQA Speech Quality (MOS) Demo") as demo: | |
| 71 | 
             
                    **Dimensions:** higher = fewer issues in that aspect.
         | 
| 72 | 
             
                    """
         | 
| 73 | 
             
                )
         | 
| 74 | 
            -
                audio = gr.Audio(sources=[" | 
| 75 | 
             
                btn = gr.Button("Predict")
         | 
| 76 |  | 
| 77 | 
            -
                out_table = gr.Dataframe( | 
| 78 |  | 
| 79 | 
             
                bars = gr.BarPlot(
         | 
| 80 | 
             
                    x="Metric", y="Score",
         | 
| 81 | 
             
                    y_lim=(0, 5),
         | 
| 82 | 
            -
                     | 
| 83 | 
            -
                    width=0.6,
         | 
| 84 | 
             
                    interactive=False,
         | 
| 85 | 
            -
                    label="Scores (0–5, higher = better)"
         | 
| 86 | 
             
                )
         | 
| 87 |  | 
| 88 | 
            -
                 | 
| 89 | 
            -
                    import pandas as pd
         | 
| 90 | 
            -
                    df = pd.DataFrame({"Metric": list(bars_dict.keys()), "Score": list(bars_dict.values())})
         | 
| 91 | 
            -
                    return table_dict, df
         | 
| 92 | 
            -
             | 
| 93 | 
            -
                btn.click(fn=predict_nisqa, inputs=audio, outputs=[out_table, bars], postprocess=False)\
         | 
| 94 | 
            -
                   .then(fn=_bars_to_df, inputs=[out_table, bars], outputs=[out_table, bars])
         | 
| 95 |  | 
| 96 | 
             
            if __name__ == "__main__":
         | 
| 97 | 
             
                demo.launch()
         | 
|  | |
| 4 | 
             
            import librosa
         | 
| 5 | 
             
            from torchmetrics.functional.audio.nisqa import non_intrusive_speech_quality_assessment as tm_nisqa
         | 
| 6 | 
             
            import spaces
         | 
| 7 | 
            +
            import pandas as pd
         | 
| 8 |  | 
| 9 | 
             
            SR = 16000
         | 
| 10 |  | 
|  | |
| 53 | 
             
                    ("Loudness", loudness, label_dim(loudness), explain_dim("Loudness")),
         | 
| 54 | 
             
                ]
         | 
| 55 |  | 
| 56 | 
            +
                df_table = pd.DataFrame(
         | 
| 57 | 
            +
                    {
         | 
| 58 | 
            +
                        "Metric": [m[0] for m in metrics],
         | 
| 59 | 
            +
                        "Score":  [round(float(m[1]), 3) for m in metrics],
         | 
| 60 | 
            +
                        "Label":  [m[2] for m in metrics],
         | 
| 61 | 
            +
                        "Notes":  [m[3] for m in metrics],
         | 
| 62 | 
            +
                    }
         | 
| 63 | 
            +
                )
         | 
| 64 | 
            +
                df_bars = pd.DataFrame(
         | 
| 65 | 
            +
                    {"Metric": [m[0] for m in metrics], "Score": [float(m[1]) for m in metrics]}
         | 
| 66 | 
            +
                )
         | 
| 67 | 
            +
                return df_table, df_bars
         | 
| 68 |  | 
| 69 | 
             
            with gr.Blocks(title="NISQA Speech Quality (MOS) Demo") as demo:
         | 
| 70 | 
             
                gr.Markdown(
         | 
|  | |
| 75 | 
             
                    **Dimensions:** higher = fewer issues in that aspect.
         | 
| 76 | 
             
                    """
         | 
| 77 | 
             
                )
         | 
| 78 | 
            +
                audio = gr.Audio(sources=["upload", "microphone"], type="filepath", label="Input audio")
         | 
| 79 | 
             
                btn = gr.Button("Predict")
         | 
| 80 |  | 
| 81 | 
            +
                out_table = gr.Dataframe(interactive=False, label="Results")
         | 
| 82 |  | 
| 83 | 
             
                bars = gr.BarPlot(
         | 
| 84 | 
             
                    x="Metric", y="Score",
         | 
| 85 | 
             
                    y_lim=(0, 5),
         | 
| 86 | 
            +
                    label="Scores (0–5, higher = better)",
         | 
|  | |
| 87 | 
             
                    interactive=False,
         | 
|  | |
| 88 | 
             
                )
         | 
| 89 |  | 
| 90 | 
            +
                btn.click(fn=predict_nisqa, inputs=audio, outputs=[out_table, bars])
         | 
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
| 91 |  | 
| 92 | 
             
            if __name__ == "__main__":
         | 
| 93 | 
             
                demo.launch()
         |