Spaces:
Running
on
Zero
Running
on
Zero
Create app.py
Browse files
app.py
ADDED
|
@@ -0,0 +1,45 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
import gradio as gr
|
| 2 |
+
import torch
|
| 3 |
+
import numpy as np
|
| 4 |
+
import librosa
|
| 5 |
+
|
| 6 |
+
from torchmetrics.functional.audio.nisqa import non_intrusive_speech_quality_assessment as tm_nisqa
|
| 7 |
+
|
| 8 |
+
SR = 16000
|
| 9 |
+
|
| 10 |
+
def predict_nisqa(audio):
|
| 11 |
+
if isinstance(audio, tuple):
|
| 12 |
+
_sr, y = audio
|
| 13 |
+
y = librosa.resample(np.asarray(y).astype(np.float32), orig_sr=_sr, target_sr=SR)
|
| 14 |
+
else:
|
| 15 |
+
y, _ = librosa.load(audio, sr=SR, mono=True)
|
| 16 |
+
|
| 17 |
+
wav = torch.tensor(y, dtype=torch.float32)
|
| 18 |
+
|
| 19 |
+
out = tm_nisqa(wav, SR).detach().cpu().numpy().tolist()
|
| 20 |
+
mos, noisiness, discontinuity, coloration, loudness = out
|
| 21 |
+
|
| 22 |
+
table = {
|
| 23 |
+
"Metric": ["MOS (overall)", "Noisiness", "Discontinuity", "Coloration", "Loudness"],
|
| 24 |
+
"Score": [round(mos, 3), round(noisiness, 3), round(discontinuity, 3),
|
| 25 |
+
round(coloration, 3), round(loudness, 3)]
|
| 26 |
+
}
|
| 27 |
+
return table
|
| 28 |
+
|
| 29 |
+
with gr.Blocks(title="NISQA Speech Quality (MOS) Demo") as demo:
|
| 30 |
+
gr.Markdown(
|
| 31 |
+
"""
|
| 32 |
+
# 🎧 NISQA Speech Quality (MOS)
|
| 33 |
+
Upload or record speech and get **MOS + quality dimensions**.
|
| 34 |
+
Uses NISQA v2.0 via TorchMetrics.
|
| 35 |
+
"""
|
| 36 |
+
)
|
| 37 |
+
with gr.Row():
|
| 38 |
+
audio = gr.Audio(sources=["mic", "upload"], type="filepath", label="Input audio (wav/mp3/m4a...)")
|
| 39 |
+
btn = gr.Button("Predict")
|
| 40 |
+
out = gr.Dataframe(headers=["Metric", "Score"], label="Results", interactive=False)
|
| 41 |
+
|
| 42 |
+
btn.click(fn=predict_nisqa, inputs=audio, outputs=out)
|
| 43 |
+
|
| 44 |
+
if __name__ == "__main__":
|
| 45 |
+
demo.launch()
|