Update app.py
Browse files
app.py
CHANGED
|
@@ -1,37 +1,81 @@
|
|
| 1 |
-
from audiocraft.models import MusicGen
|
| 2 |
-
import streamlit as st
|
| 3 |
-
import os
|
| 4 |
-
import torch
|
| 5 |
-
import torchaudio
|
| 6 |
-
import numpy as np
|
| 7 |
-
import base64
|
| 8 |
-
|
| 9 |
-
@st.cache_resource
|
| 10 |
-
def load_model():
|
| 11 |
-
model=MusicGen.get_pretrained("facebook/musicgen-small")
|
| 12 |
-
return model
|
| 13 |
-
|
| 14 |
-
|
| 15 |
-
|
| 16 |
-
|
| 17 |
-
)
|
| 18 |
-
|
| 19 |
-
|
| 20 |
-
|
| 21 |
-
|
| 22 |
-
|
| 23 |
-
|
| 24 |
-
|
| 25 |
-
|
| 26 |
-
|
| 27 |
-
|
| 28 |
-
|
| 29 |
-
|
| 30 |
-
|
| 31 |
-
|
| 32 |
-
|
| 33 |
-
|
| 34 |
-
|
| 35 |
-
|
| 36 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 37 |
main()
|
|
|
|
| 1 |
+
from audiocraft.models import MusicGen
|
| 2 |
+
import streamlit as st
|
| 3 |
+
import os
|
| 4 |
+
import torch
|
| 5 |
+
import torchaudio
|
| 6 |
+
import numpy as np
|
| 7 |
+
import base64
|
| 8 |
+
|
| 9 |
+
@st.cache_resource
|
| 10 |
+
def load_model():
|
| 11 |
+
model=MusicGen.get_pretrained("facebook/musicgen-small")
|
| 12 |
+
return model
|
| 13 |
+
|
| 14 |
+
def generate_music_tensors(description,duration:int):
|
| 15 |
+
print("Description:",description)
|
| 16 |
+
print("Duration:",duration)
|
| 17 |
+
model=load_model()
|
| 18 |
+
|
| 19 |
+
model.set_generation_params(
|
| 20 |
+
use_sampling=True,
|
| 21 |
+
top_k=250,
|
| 22 |
+
duration=duration
|
| 23 |
+
)
|
| 24 |
+
|
| 25 |
+
output=model.generate(
|
| 26 |
+
descriptions=[description],
|
| 27 |
+
progress=True,
|
| 28 |
+
return_tokens=True
|
| 29 |
+
)
|
| 30 |
+
return output[0]
|
| 31 |
+
|
| 32 |
+
def save_audio(samples:torch.tensor):
|
| 33 |
+
sample_rate=32000,
|
| 34 |
+
save_path="audio_output/"
|
| 35 |
+
|
| 36 |
+
assert samples.dim()==2 or samples.dim()==3
|
| 37 |
+
samples=samples.detach().cpu()
|
| 38 |
+
|
| 39 |
+
if samples.dim()==2:
|
| 40 |
+
samples=samples[None,...]
|
| 41 |
+
for idx,audio in enumerate(samples):
|
| 42 |
+
audio_path=os.path.join(save_path,f"audio_{idx}.wav")
|
| 43 |
+
torchaudio.save(audio_path,audio,sample_rate)
|
| 44 |
+
|
| 45 |
+
def get_binary_file_downloader_html(bin_file,file_label='File'):
|
| 46 |
+
with open(bin_file,'rb') as f:
|
| 47 |
+
data=f.read()
|
| 48 |
+
bin_str=base64.b64encode(data).decode()
|
| 49 |
+
href=f'<a href="data:application/octet-stream;base64,{bin_str} download {(bin_file)}">Download {file_label} from here</a>'
|
| 50 |
+
return href
|
| 51 |
+
|
| 52 |
+
st.set_page_config(
|
| 53 |
+
page_icon=":musical_note:",
|
| 54 |
+
page_title="Music Gen"
|
| 55 |
+
)
|
| 56 |
+
|
| 57 |
+
def main():
|
| 58 |
+
st.title("Your Music")
|
| 59 |
+
|
| 60 |
+
with st.expander("See Explanation"):
|
| 61 |
+
st.write("App is developed by using Meta's Audiocraft Music Gen model. Write your text and we will generate audio")
|
| 62 |
+
text_area=st.text_area("Enter description")
|
| 63 |
+
time_slider=st.slider("Select time duration(s)",2,5,20)
|
| 64 |
+
|
| 65 |
+
if text_area and time_slider:
|
| 66 |
+
st.json(
|
| 67 |
+
{
|
| 68 |
+
"Description":text_area,
|
| 69 |
+
"Selected duration:":time_slider
|
| 70 |
+
}
|
| 71 |
+
)
|
| 72 |
+
st.subheader("Generated Music")
|
| 73 |
+
music_tensors=generate_music_tensors(text_area,time_slider)
|
| 74 |
+
save_music_file=save_audio(music_tensors)
|
| 75 |
+
audio_file_path='audio_output/audio_0.wav'
|
| 76 |
+
audio_file=open(audio_file_path,'rb')
|
| 77 |
+
audio_bytes=audio_file.read()
|
| 78 |
+
st.audio(audio_bytes)
|
| 79 |
+
st.markdown(get_binary_file_downloader_html,audio_file_path,'Audio',unsafe_allow_html=True)
|
| 80 |
+
if __name__=="__main__":
|
| 81 |
main()
|