Spaces:
Running
Running
| from dac.nn.quantize import ResidualVectorQuantize | |
| from torch import nn | |
| from modules.wavenet import WN | |
| import torch | |
| import torchaudio | |
| import torchaudio.functional as audio_F | |
| import numpy as np | |
| from .alias_free_torch import * | |
| from torch.nn.utils import weight_norm | |
| from torch import nn, sin, pow | |
| from einops.layers.torch import Rearrange | |
| from dac.model.encodec import SConv1d | |
| def init_weights(m): | |
| if isinstance(m, nn.Conv1d): | |
| nn.init.trunc_normal_(m.weight, std=0.02) | |
| nn.init.constant_(m.bias, 0) | |
| def WNConv1d(*args, **kwargs): | |
| return weight_norm(nn.Conv1d(*args, **kwargs)) | |
| def WNConvTranspose1d(*args, **kwargs): | |
| return weight_norm(nn.ConvTranspose1d(*args, **kwargs)) | |
| class SnakeBeta(nn.Module): | |
| """ | |
| A modified Snake function which uses separate parameters for the magnitude of the periodic components | |
| Shape: | |
| - Input: (B, C, T) | |
| - Output: (B, C, T), same shape as the input | |
| Parameters: | |
| - alpha - trainable parameter that controls frequency | |
| - beta - trainable parameter that controls magnitude | |
| References: | |
| - This activation function is a modified version based on this paper by Liu Ziyin, Tilman Hartwig, Masahito Ueda: | |
| https://arxiv.org/abs/2006.08195 | |
| Examples: | |
| >>> a1 = snakebeta(256) | |
| >>> x = torch.randn(256) | |
| >>> x = a1(x) | |
| """ | |
| def __init__( | |
| self, in_features, alpha=1.0, alpha_trainable=True, alpha_logscale=False | |
| ): | |
| """ | |
| Initialization. | |
| INPUT: | |
| - in_features: shape of the input | |
| - alpha - trainable parameter that controls frequency | |
| - beta - trainable parameter that controls magnitude | |
| alpha is initialized to 1 by default, higher values = higher-frequency. | |
| beta is initialized to 1 by default, higher values = higher-magnitude. | |
| alpha will be trained along with the rest of your model. | |
| """ | |
| super(SnakeBeta, self).__init__() | |
| self.in_features = in_features | |
| # initialize alpha | |
| self.alpha_logscale = alpha_logscale | |
| if self.alpha_logscale: # log scale alphas initialized to zeros | |
| self.alpha = nn.Parameter(torch.zeros(in_features) * alpha) | |
| self.beta = nn.Parameter(torch.zeros(in_features) * alpha) | |
| else: # linear scale alphas initialized to ones | |
| self.alpha = nn.Parameter(torch.ones(in_features) * alpha) | |
| self.beta = nn.Parameter(torch.ones(in_features) * alpha) | |
| self.alpha.requires_grad = alpha_trainable | |
| self.beta.requires_grad = alpha_trainable | |
| self.no_div_by_zero = 0.000000001 | |
| def forward(self, x): | |
| """ | |
| Forward pass of the function. | |
| Applies the function to the input elementwise. | |
| SnakeBeta := x + 1/b * sin^2 (xa) | |
| """ | |
| alpha = self.alpha.unsqueeze(0).unsqueeze(-1) # line up with x to [B, C, T] | |
| beta = self.beta.unsqueeze(0).unsqueeze(-1) | |
| if self.alpha_logscale: | |
| alpha = torch.exp(alpha) | |
| beta = torch.exp(beta) | |
| x = x + (1.0 / (beta + self.no_div_by_zero)) * pow(sin(x * alpha), 2) | |
| return x | |
| class ResidualUnit(nn.Module): | |
| def __init__(self, dim: int = 16, dilation: int = 1): | |
| super().__init__() | |
| pad = ((7 - 1) * dilation) // 2 | |
| self.block = nn.Sequential( | |
| Activation1d(activation=SnakeBeta(dim, alpha_logscale=True)), | |
| WNConv1d(dim, dim, kernel_size=7, dilation=dilation, padding=pad), | |
| Activation1d(activation=SnakeBeta(dim, alpha_logscale=True)), | |
| WNConv1d(dim, dim, kernel_size=1), | |
| ) | |
| def forward(self, x): | |
| return x + self.block(x) | |
| class CNNLSTM(nn.Module): | |
| def __init__(self, indim, outdim, head, global_pred=False): | |
| super().__init__() | |
| self.global_pred = global_pred | |
| self.model = nn.Sequential( | |
| ResidualUnit(indim, dilation=1), | |
| ResidualUnit(indim, dilation=2), | |
| ResidualUnit(indim, dilation=3), | |
| Activation1d(activation=SnakeBeta(indim, alpha_logscale=True)), | |
| Rearrange("b c t -> b t c"), | |
| ) | |
| self.heads = nn.ModuleList([nn.Linear(indim, outdim) for i in range(head)]) | |
| def forward(self, x): | |
| # x: [B, C, T] | |
| x = self.model(x) | |
| if self.global_pred: | |
| x = torch.mean(x, dim=1, keepdim=False) | |
| outs = [head(x) for head in self.heads] | |
| return outs | |
| def sequence_mask(length, max_length=None): | |
| if max_length is None: | |
| max_length = length.max() | |
| x = torch.arange(max_length, dtype=length.dtype, device=length.device) | |
| return x.unsqueeze(0) < length.unsqueeze(1) | |
| class FAquantizer(nn.Module): | |
| def __init__(self, in_dim=1024, | |
| n_p_codebooks=1, | |
| n_c_codebooks=2, | |
| n_t_codebooks=2, | |
| n_r_codebooks=3, | |
| codebook_size=1024, | |
| codebook_dim=8, | |
| quantizer_dropout=0.5, | |
| causal=False, | |
| separate_prosody_encoder=False, | |
| timbre_norm=False,): | |
| super(FAquantizer, self).__init__() | |
| conv1d_type = SConv1d# if causal else nn.Conv1d | |
| self.prosody_quantizer = ResidualVectorQuantize( | |
| input_dim=in_dim, | |
| n_codebooks=n_p_codebooks, | |
| codebook_size=codebook_size, | |
| codebook_dim=codebook_dim, | |
| quantizer_dropout=quantizer_dropout, | |
| ) | |
| self.content_quantizer = ResidualVectorQuantize( | |
| input_dim=in_dim, | |
| n_codebooks=n_c_codebooks, | |
| codebook_size=codebook_size, | |
| codebook_dim=codebook_dim, | |
| quantizer_dropout=quantizer_dropout, | |
| ) | |
| self.residual_quantizer = ResidualVectorQuantize( | |
| input_dim=in_dim, | |
| n_codebooks=n_r_codebooks, | |
| codebook_size=codebook_size, | |
| codebook_dim=codebook_dim, | |
| quantizer_dropout=quantizer_dropout, | |
| ) | |
| self.melspec_linear = conv1d_type(in_channels=20, out_channels=256, kernel_size=1, causal=causal) | |
| self.melspec_encoder = WN(hidden_channels=256, kernel_size=5, dilation_rate=1, n_layers=8, gin_channels=0, p_dropout=0.2, causal=causal) | |
| self.melspec_linear2 = conv1d_type(in_channels=256, out_channels=1024, kernel_size=1, causal=causal) | |
| self.prob_random_mask_residual = 0.75 | |
| SPECT_PARAMS = { | |
| "n_fft": 2048, | |
| "win_length": 1200, | |
| "hop_length": 300, | |
| } | |
| MEL_PARAMS = { | |
| "n_mels": 80, | |
| } | |
| self.to_mel = torchaudio.transforms.MelSpectrogram( | |
| n_mels=MEL_PARAMS["n_mels"], sample_rate=24000, **SPECT_PARAMS | |
| ) | |
| self.mel_mean, self.mel_std = -4, 4 | |
| self.frame_rate = 24000 / 300 | |
| self.hop_length = 300 | |
| def preprocess(self, wave_tensor, n_bins=20): | |
| mel_tensor = self.to_mel(wave_tensor.squeeze(1)) | |
| mel_tensor = (torch.log(1e-5 + mel_tensor) - self.mel_mean) / self.mel_std | |
| return mel_tensor[:, :n_bins, :int(wave_tensor.size(-1) / self.hop_length)] | |
| def forward(self, x, wave_segments): | |
| outs = 0 | |
| prosody_feature = self.preprocess(wave_segments) | |
| f0_input = prosody_feature # (B, T, 20) | |
| f0_input = self.melspec_linear(f0_input) | |
| f0_input = self.melspec_encoder(f0_input, torch.ones(f0_input.shape[0], 1, f0_input.shape[2]).to( | |
| f0_input.device).bool()) | |
| f0_input = self.melspec_linear2(f0_input) | |
| common_min_size = min(f0_input.size(2), x.size(2)) | |
| f0_input = f0_input[:, :, :common_min_size] | |
| x = x[:, :, :common_min_size] | |
| z_p, codes_p, latents_p, commitment_loss_p, codebook_loss_p = self.prosody_quantizer( | |
| f0_input, 1 | |
| ) | |
| outs += z_p.detach() | |
| z_c, codes_c, latents_c, commitment_loss_c, codebook_loss_c = self.content_quantizer( | |
| x, 2 | |
| ) | |
| outs += z_c.detach() | |
| residual_feature = x - z_p.detach() - z_c.detach() | |
| z_r, codes_r, latents_r, commitment_loss_r, codebook_loss_r = self.residual_quantizer( | |
| residual_feature, 3 | |
| ) | |
| quantized = [z_p, z_c, z_r] | |
| codes = [codes_p, codes_c, codes_r] | |
| return quantized, codes |