Spaces:
Build error
Build error
| import json | |
| import os | |
| import time | |
| import zipfile | |
| from pathlib import Path | |
| import numpy as np | |
| import torch | |
| import transformers | |
| from transformers import AutoModelForCausalLM, AutoTokenizer | |
| import modules.shared as shared | |
| transformers.logging.set_verbosity_error() | |
| local_rank = None | |
| if shared.args.flexgen: | |
| from flexgen.flex_opt import (CompressionConfig, ExecutionEnv, OptLM, | |
| Policy, str2bool) | |
| if shared.args.deepspeed: | |
| import deepspeed | |
| from transformers.deepspeed import (HfDeepSpeedConfig, | |
| is_deepspeed_zero3_enabled) | |
| from modules.deepspeed_parameters import generate_ds_config | |
| # Distributed setup | |
| local_rank = shared.args.local_rank if shared.args.local_rank is not None else int(os.getenv("LOCAL_RANK", "0")) | |
| world_size = int(os.getenv("WORLD_SIZE", "1")) | |
| torch.cuda.set_device(local_rank) | |
| deepspeed.init_distributed() | |
| ds_config = generate_ds_config(shared.args.bf16, 1 * world_size, shared.args.nvme_offload_dir) | |
| dschf = HfDeepSpeedConfig(ds_config) # Keep this object alive for the Transformers integration | |
| def load_model(model_name): | |
| print(f"Loading {model_name}...") | |
| t0 = time.time() | |
| shared.is_RWKV = model_name.lower().startswith('rwkv-') | |
| # Default settings | |
| if not any([shared.args.cpu, shared.args.load_in_8bit, shared.args.gptq_bits, shared.args.auto_devices, shared.args.disk, shared.args.gpu_memory is not None, shared.args.cpu_memory is not None, shared.args.deepspeed, shared.args.flexgen, shared.is_RWKV]): | |
| if any(size in shared.model_name.lower() for size in ('13b', '20b', '30b')): | |
| model = AutoModelForCausalLM.from_pretrained(Path(f"models/{shared.model_name}"), device_map='auto', load_in_8bit=True) | |
| else: | |
| model = AutoModelForCausalLM.from_pretrained(Path(f"models/{shared.model_name}"), low_cpu_mem_usage=True, torch_dtype=torch.bfloat16 if shared.args.bf16 else torch.float16).cuda() | |
| # FlexGen | |
| elif shared.args.flexgen: | |
| # Initialize environment | |
| env = ExecutionEnv.create(shared.args.disk_cache_dir) | |
| # Offloading policy | |
| policy = Policy(1, 1, | |
| shared.args.percent[0], shared.args.percent[1], | |
| shared.args.percent[2], shared.args.percent[3], | |
| shared.args.percent[4], shared.args.percent[5], | |
| overlap=True, sep_layer=True, pin_weight=shared.args.pin_weight, | |
| cpu_cache_compute=False, attn_sparsity=1.0, | |
| compress_weight=shared.args.compress_weight, | |
| comp_weight_config=CompressionConfig( | |
| num_bits=4, group_size=64, | |
| group_dim=0, symmetric=False), | |
| compress_cache=False, | |
| comp_cache_config=CompressionConfig( | |
| num_bits=4, group_size=64, | |
| group_dim=2, symmetric=False)) | |
| model = OptLM(f"facebook/{shared.model_name}", env, "models", policy) | |
| # DeepSpeed ZeRO-3 | |
| elif shared.args.deepspeed: | |
| model = AutoModelForCausalLM.from_pretrained(Path(f"models/{shared.model_name}"), torch_dtype=torch.bfloat16 if shared.args.bf16 else torch.float16) | |
| model = deepspeed.initialize(model=model, config_params=ds_config, model_parameters=None, optimizer=None, lr_scheduler=None)[0] | |
| model.module.eval() # Inference | |
| print(f"DeepSpeed ZeRO-3 is enabled: {is_deepspeed_zero3_enabled()}") | |
| # RMKV model (not on HuggingFace) | |
| elif shared.is_RWKV: | |
| from modules.RWKV import RWKVModel, RWKVTokenizer | |
| model = RWKVModel.from_pretrained(Path(f'models/{model_name}'), dtype="fp32" if shared.args.cpu else "bf16" if shared.args.bf16 else "fp16", device="cpu" if shared.args.cpu else "cuda") | |
| tokenizer = RWKVTokenizer.from_pretrained(Path('models')) | |
| return model, tokenizer | |
| # Quantized model | |
| elif shared.args.gptq_bits > 0: | |
| from modules.GPTQ_loader import load_quantized | |
| model = load_quantized(model_name) | |
| # Custom | |
| else: | |
| command = "AutoModelForCausalLM.from_pretrained" | |
| params = ["low_cpu_mem_usage=True"] | |
| if not shared.args.cpu and not torch.cuda.is_available(): | |
| print("Warning: no GPU has been detected.\nFalling back to CPU mode.\n") | |
| shared.args.cpu = True | |
| if shared.args.cpu: | |
| params.append("low_cpu_mem_usage=True") | |
| params.append("torch_dtype=torch.float32") | |
| else: | |
| params.append("device_map='auto'") | |
| params.append("load_in_8bit=True" if shared.args.load_in_8bit else "torch_dtype=torch.bfloat16" if shared.args.bf16 else "torch_dtype=torch.float16") | |
| if shared.args.gpu_memory: | |
| memory_map = shared.args.gpu_memory | |
| max_memory = f"max_memory={{0: '{memory_map[0]}GiB'" | |
| for i in range(1, len(memory_map)): | |
| max_memory += (f", {i}: '{memory_map[i]}GiB'") | |
| max_memory += (f", 'cpu': '{shared.args.cpu_memory or '99'}GiB'}}") | |
| params.append(max_memory) | |
| elif not shared.args.load_in_8bit: | |
| total_mem = (torch.cuda.get_device_properties(0).total_memory/(1024*1024)) | |
| suggestion = round((total_mem-1000)/1000)*1000 | |
| if total_mem-suggestion < 800: | |
| suggestion -= 1000 | |
| suggestion = int(round(suggestion/1000)) | |
| print(f"\033[1;32;1mAuto-assiging --gpu-memory {suggestion} for your GPU to try to prevent out-of-memory errors.\nYou can manually set other values.\033[0;37;0m") | |
| params.append(f"max_memory={{0: '{suggestion}GiB', 'cpu': '{shared.args.cpu_memory or '99'}GiB'}}") | |
| if shared.args.disk: | |
| params.append(f"offload_folder='{shared.args.disk_cache_dir}'") | |
| command = f"{command}(Path(f'models/{shared.model_name}'), {', '.join(set(params))})" | |
| model = eval(command) | |
| # Loading the tokenizer | |
| if shared.model_name.lower().startswith(('gpt4chan', 'gpt-4chan', '4chan')) and Path("models/gpt-j-6B/").exists(): | |
| tokenizer = AutoTokenizer.from_pretrained(Path("models/gpt-j-6B/")) | |
| else: | |
| tokenizer = AutoTokenizer.from_pretrained(Path(f"models/{shared.model_name}/")) | |
| tokenizer.truncation_side = 'left' | |
| print(f"Loaded the model in {(time.time()-t0):.2f} seconds.") | |
| return model, tokenizer | |
| def load_soft_prompt(name): | |
| if name == 'None': | |
| shared.soft_prompt = False | |
| shared.soft_prompt_tensor = None | |
| else: | |
| with zipfile.ZipFile(Path(f'softprompts/{name}.zip')) as zf: | |
| zf.extract('tensor.npy') | |
| zf.extract('meta.json') | |
| j = json.loads(open('meta.json', 'r').read()) | |
| print(f"\nLoading the softprompt \"{name}\".") | |
| for field in j: | |
| if field != 'name': | |
| if type(j[field]) is list: | |
| print(f"{field}: {', '.join(j[field])}") | |
| else: | |
| print(f"{field}: {j[field]}") | |
| print() | |
| tensor = np.load('tensor.npy') | |
| Path('tensor.npy').unlink() | |
| Path('meta.json').unlink() | |
| tensor = torch.Tensor(tensor).to(device=shared.model.device, dtype=shared.model.dtype) | |
| tensor = torch.reshape(tensor, (1, tensor.shape[0], tensor.shape[1])) | |
| shared.soft_prompt = True | |
| shared.soft_prompt_tensor = tensor | |
| return name | |