Spaces:
Build error
Build error
| import gc | |
| import re | |
| import time | |
| import numpy as np | |
| import torch | |
| import transformers | |
| import modules.shared as shared | |
| from modules.callbacks import (Iteratorize, Stream, | |
| _SentinelTokenStoppingCriteria) | |
| from modules.extensions import apply_extensions | |
| from modules.html_generator import generate_4chan_html, generate_basic_html | |
| from modules.models import local_rank | |
| def get_max_prompt_length(tokens): | |
| max_length = 2048-tokens | |
| if shared.soft_prompt: | |
| max_length -= shared.soft_prompt_tensor.shape[1] | |
| return max_length | |
| def encode(prompt, tokens_to_generate=0, add_special_tokens=True): | |
| if shared.is_RWKV: | |
| input_ids = shared.tokenizer.encode(str(prompt)) | |
| input_ids = np.array(input_ids).reshape(1, len(input_ids)) | |
| return input_ids | |
| else: | |
| input_ids = shared.tokenizer.encode(str(prompt), return_tensors='pt', truncation=True, max_length=get_max_prompt_length(tokens_to_generate), add_special_tokens=add_special_tokens) | |
| if shared.args.cpu: | |
| return input_ids | |
| elif shared.args.flexgen: | |
| return input_ids.numpy() | |
| elif shared.args.deepspeed: | |
| return input_ids.to(device=local_rank) | |
| else: | |
| return input_ids.cuda() | |
| def decode(output_ids): | |
| # Open Assistant relies on special tokens like <|endoftext|> | |
| if re.match('oasst-*', shared.model_name.lower()): | |
| return shared.tokenizer.decode(output_ids, skip_special_tokens=False) | |
| else: | |
| reply = shared.tokenizer.decode(output_ids, skip_special_tokens=True) | |
| reply = reply.replace(r'<|endoftext|>', '') | |
| return reply | |
| def generate_softprompt_input_tensors(input_ids): | |
| inputs_embeds = shared.model.transformer.wte(input_ids) | |
| inputs_embeds = torch.cat((shared.soft_prompt_tensor, inputs_embeds), dim=1) | |
| filler_input_ids = torch.zeros((1, inputs_embeds.shape[1]), dtype=input_ids.dtype).to(shared.model.device) | |
| #filler_input_ids += shared.model.config.bos_token_id # setting dummy input_ids to bos tokens | |
| return inputs_embeds, filler_input_ids | |
| # Removes empty replies from gpt4chan outputs | |
| def fix_gpt4chan(s): | |
| for i in range(10): | |
| s = re.sub("--- [0-9]*\n>>[0-9]*\n---", "---", s) | |
| s = re.sub("--- [0-9]*\n *\n---", "---", s) | |
| s = re.sub("--- [0-9]*\n\n\n---", "---", s) | |
| return s | |
| # Fix the LaTeX equations in galactica | |
| def fix_galactica(s): | |
| s = s.replace(r'\[', r'$') | |
| s = s.replace(r'\]', r'$') | |
| s = s.replace(r'\(', r'$') | |
| s = s.replace(r'\)', r'$') | |
| s = s.replace(r'$$', r'$') | |
| s = re.sub(r'\n', r'\n\n', s) | |
| s = re.sub(r"\n{3,}", "\n\n", s) | |
| return s | |
| def formatted_outputs(reply, model_name): | |
| if not (shared.args.chat or shared.args.cai_chat): | |
| if model_name.lower().startswith('galactica'): | |
| reply = fix_galactica(reply) | |
| return reply, reply, generate_basic_html(reply) | |
| elif model_name.lower().startswith(('gpt4chan', 'gpt-4chan', '4chan')): | |
| reply = fix_gpt4chan(reply) | |
| return reply, 'Only applicable for GALACTICA models.', generate_4chan_html(reply) | |
| else: | |
| return reply, 'Only applicable for GALACTICA models.', generate_basic_html(reply) | |
| else: | |
| return reply | |
| def clear_torch_cache(): | |
| gc.collect() | |
| if not shared.args.cpu: | |
| torch.cuda.empty_cache() | |
| def generate_reply(question, max_new_tokens, do_sample, temperature, top_p, typical_p, repetition_penalty, top_k, min_length, no_repeat_ngram_size, num_beams, penalty_alpha, length_penalty, early_stopping, eos_token=None, stopping_string=None): | |
| clear_torch_cache() | |
| t0 = time.time() | |
| # These models are not part of Hugging Face, so we handle them | |
| # separately and terminate the function call earlier | |
| if shared.is_RWKV: | |
| try: | |
| if shared.args.no_stream: | |
| reply = shared.model.generate(context=question, token_count=max_new_tokens, temperature=temperature, top_p=top_p, top_k=top_k) | |
| yield formatted_outputs(reply, shared.model_name) | |
| else: | |
| yield formatted_outputs(question, shared.model_name) | |
| # RWKV has proper streaming, which is very nice. | |
| # No need to generate 8 tokens at a time. | |
| for reply in shared.model.generate_with_streaming(context=question, token_count=max_new_tokens, temperature=temperature, top_p=top_p, top_k=top_k): | |
| yield formatted_outputs(reply, shared.model_name) | |
| finally: | |
| t1 = time.time() | |
| output = encode(reply)[0] | |
| input_ids = encode(question) | |
| print(f"Output generated in {(t1-t0):.2f} seconds ({(len(output)-len(input_ids[0]))/(t1-t0):.2f} tokens/s, {len(output)-len(input_ids[0])} tokens)") | |
| return | |
| original_question = question | |
| if not (shared.args.chat or shared.args.cai_chat): | |
| question = apply_extensions(question, "input") | |
| if shared.args.verbose: | |
| print(f"\n\n{question}\n--------------------\n") | |
| input_ids = encode(question, max_new_tokens) | |
| original_input_ids = input_ids | |
| output = input_ids[0] | |
| cuda = "" if (shared.args.cpu or shared.args.deepspeed or shared.args.flexgen) else ".cuda()" | |
| eos_token_ids = [shared.tokenizer.eos_token_id] if shared.tokenizer.eos_token_id is not None else [] | |
| if eos_token is not None: | |
| eos_token_ids.append(int(encode(eos_token)[0][-1])) | |
| stopping_criteria_list = transformers.StoppingCriteriaList() | |
| if stopping_string is not None: | |
| # Copied from https://github.com/PygmalionAI/gradio-ui/blob/master/src/model.py | |
| t = encode(stopping_string, 0, add_special_tokens=False) | |
| stopping_criteria_list.append(_SentinelTokenStoppingCriteria(sentinel_token_ids=t, starting_idx=len(input_ids[0]))) | |
| if not shared.args.flexgen: | |
| generate_params = [ | |
| f"max_new_tokens=max_new_tokens", | |
| f"eos_token_id={eos_token_ids}", | |
| f"stopping_criteria=stopping_criteria_list", | |
| f"do_sample={do_sample}", | |
| f"temperature={temperature}", | |
| f"top_p={top_p}", | |
| f"typical_p={typical_p}", | |
| f"repetition_penalty={repetition_penalty}", | |
| f"top_k={top_k}", | |
| f"min_length={min_length if shared.args.no_stream else 0}", | |
| f"no_repeat_ngram_size={no_repeat_ngram_size}", | |
| f"num_beams={num_beams}", | |
| f"penalty_alpha={penalty_alpha}", | |
| f"length_penalty={length_penalty}", | |
| f"early_stopping={early_stopping}", | |
| ] | |
| else: | |
| generate_params = [ | |
| f"max_new_tokens={max_new_tokens if shared.args.no_stream else 8}", | |
| f"do_sample={do_sample}", | |
| f"temperature={temperature}", | |
| f"stop={eos_token_ids[-1]}", | |
| ] | |
| if shared.args.deepspeed: | |
| generate_params.append("synced_gpus=True") | |
| if shared.soft_prompt: | |
| inputs_embeds, filler_input_ids = generate_softprompt_input_tensors(input_ids) | |
| generate_params.insert(0, "inputs_embeds=inputs_embeds") | |
| generate_params.insert(0, "inputs=filler_input_ids") | |
| else: | |
| generate_params.insert(0, "inputs=input_ids") | |
| try: | |
| # Generate the entire reply at once. | |
| if shared.args.no_stream: | |
| with torch.no_grad(): | |
| output = eval(f"shared.model.generate({', '.join(generate_params)}){cuda}")[0] | |
| if shared.soft_prompt: | |
| output = torch.cat((input_ids[0], output[filler_input_ids.shape[1]:])) | |
| reply = decode(output) | |
| if not (shared.args.chat or shared.args.cai_chat): | |
| reply = original_question + apply_extensions(reply[len(question):], "output") | |
| yield formatted_outputs(reply, shared.model_name) | |
| # Stream the reply 1 token at a time. | |
| # This is based on the trick of using 'stopping_criteria' to create an iterator. | |
| elif not shared.args.flexgen: | |
| def generate_with_callback(callback=None, **kwargs): | |
| kwargs['stopping_criteria'].append(Stream(callback_func=callback)) | |
| clear_torch_cache() | |
| with torch.no_grad(): | |
| shared.model.generate(**kwargs) | |
| def generate_with_streaming(**kwargs): | |
| return Iteratorize(generate_with_callback, kwargs, callback=None) | |
| yield formatted_outputs(original_question, shared.model_name) | |
| with eval(f"generate_with_streaming({', '.join(generate_params)})") as generator: | |
| for output in generator: | |
| if shared.soft_prompt: | |
| output = torch.cat((input_ids[0], output[filler_input_ids.shape[1]:])) | |
| reply = decode(output) | |
| if not (shared.args.chat or shared.args.cai_chat): | |
| reply = original_question + apply_extensions(reply[len(question):], "output") | |
| if output[-1] in eos_token_ids: | |
| break | |
| yield formatted_outputs(reply, shared.model_name) | |
| yield formatted_outputs(reply, shared.model_name) | |
| # Stream the output naively for FlexGen since it doesn't support 'stopping_criteria' | |
| else: | |
| for i in range(max_new_tokens//8+1): | |
| clear_torch_cache() | |
| with torch.no_grad(): | |
| output = eval(f"shared.model.generate({', '.join(generate_params)})")[0] | |
| if shared.soft_prompt: | |
| output = torch.cat((input_ids[0], output[filler_input_ids.shape[1]:])) | |
| reply = decode(output) | |
| if not (shared.args.chat or shared.args.cai_chat): | |
| reply = original_question + apply_extensions(reply[len(question):], "output") | |
| if np.count_nonzero(np.isin(input_ids[0], eos_token_ids)) < np.count_nonzero(np.isin(output, eos_token_ids)): | |
| break | |
| yield formatted_outputs(reply, shared.model_name) | |
| input_ids = np.reshape(output, (1, output.shape[0])) | |
| if shared.soft_prompt: | |
| inputs_embeds, filler_input_ids = generate_softprompt_input_tensors(input_ids) | |
| yield formatted_outputs(reply, shared.model_name) | |
| finally: | |
| t1 = time.time() | |
| print(f"Output generated in {(t1-t0):.2f} seconds ({(len(output)-len(original_input_ids[0]))/(t1-t0):.2f} tokens/s, {len(output)-len(original_input_ids[0])} tokens)") | |
| return | |