Spaces:
Sleeping
Sleeping
Update app.py
Browse files
app.py
CHANGED
|
@@ -12,14 +12,23 @@ from huggingface_hub import hf_hub_download, snapshot_download
|
|
| 12 |
import subprocess
|
| 13 |
import shutil
|
| 14 |
import base64
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 15 |
|
| 16 |
# Install additional dependencies
|
| 17 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
| 18 |
|
| 19 |
DEVICE = "cuda" if torch.cuda.is_available() else "cpu"
|
| 20 |
DTYPE = torch.float16
|
| 21 |
|
| 22 |
-
|
| 23 |
|
| 24 |
DEFAULT_FACE_NUMBER = 100000
|
| 25 |
MAX_SEED = np.iinfo(np.int32).max
|
|
@@ -34,10 +43,12 @@ os.makedirs(TMP_DIR, exist_ok=True)
|
|
| 34 |
|
| 35 |
TRIPOSG_CODE_DIR = "./triposg"
|
| 36 |
if not os.path.exists(TRIPOSG_CODE_DIR):
|
|
|
|
| 37 |
os.system(f"git clone {TRIPOSG_REPO_URL} {TRIPOSG_CODE_DIR}")
|
| 38 |
|
| 39 |
MV_ADAPTER_CODE_DIR = "./mv_adapter"
|
| 40 |
if not os.path.exists(MV_ADAPTER_CODE_DIR):
|
|
|
|
| 41 |
os.system(f"git clone {MV_ADAPTER_REPO_URL} {MV_ADAPTER_CODE_DIR} && cd {MV_ADAPTER_CODE_DIR} && git checkout 7d37a97e9bc223cdb8fd26a76bd8dd46504c7c3d")
|
| 42 |
|
| 43 |
import sys
|
|
@@ -46,48 +57,60 @@ sys.path.append(os.path.join(TRIPOSG_CODE_DIR, "scripts"))
|
|
| 46 |
sys.path.append(MV_ADAPTER_CODE_DIR)
|
| 47 |
sys.path.append(os.path.join(MV_ADAPTER_CODE_DIR, "scripts"))
|
| 48 |
|
| 49 |
-
|
| 50 |
-
|
| 51 |
-
from
|
| 52 |
-
|
| 53 |
-
|
| 54 |
-
rmbg_net.
|
| 55 |
-
|
| 56 |
-
|
| 57 |
-
|
| 58 |
-
|
| 59 |
-
|
| 60 |
-
|
| 61 |
-
|
| 62 |
-
|
| 63 |
-
|
| 64 |
-
|
| 65 |
-
|
| 66 |
-
|
| 67 |
-
|
| 68 |
-
|
| 69 |
-
|
| 70 |
-
|
| 71 |
-
|
| 72 |
-
|
| 73 |
-
|
| 74 |
-
|
| 75 |
-
|
| 76 |
-
|
| 77 |
-
|
| 78 |
-
|
| 79 |
-
|
| 80 |
-
|
| 81 |
-
|
| 82 |
-
|
| 83 |
-
|
| 84 |
-
|
| 85 |
-
|
| 86 |
-
|
| 87 |
-
|
| 88 |
-
|
| 89 |
-
|
| 90 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 91 |
|
| 92 |
def get_random_hex():
|
| 93 |
random_bytes = os.urandom(8)
|
|
@@ -96,163 +119,194 @@ def get_random_hex():
|
|
| 96 |
|
| 97 |
@spaces.GPU(duration=180)
|
| 98 |
def run_full(image: str, seed: int = 0, num_inference_steps: int = 50, guidance_scale: float = 7.5, simplify: bool = True, target_face_num: int = DEFAULT_FACE_NUMBER, req=None):
|
| 99 |
-
|
| 100 |
-
|
| 101 |
-
|
| 102 |
-
|
| 103 |
-
|
| 104 |
-
|
| 105 |
-
|
| 106 |
-
|
| 107 |
-
|
| 108 |
-
|
| 109 |
-
|
| 110 |
-
|
| 111 |
-
|
| 112 |
-
|
| 113 |
-
|
| 114 |
-
|
| 115 |
-
|
| 116 |
-
|
| 117 |
-
|
| 118 |
-
|
| 119 |
-
|
| 120 |
-
|
| 121 |
-
|
| 122 |
-
|
| 123 |
-
|
| 124 |
-
|
| 125 |
-
|
| 126 |
-
|
| 127 |
-
|
| 128 |
-
|
| 129 |
-
|
| 130 |
-
|
| 131 |
-
|
| 132 |
-
|
| 133 |
-
|
| 134 |
-
|
| 135 |
-
|
| 136 |
-
|
| 137 |
-
|
| 138 |
-
|
| 139 |
-
|
| 140 |
-
|
| 141 |
-
|
| 142 |
-
|
| 143 |
-
|
| 144 |
-
|
| 145 |
-
|
| 146 |
-
|
| 147 |
-
|
| 148 |
-
|
| 149 |
-
|
| 150 |
-
|
| 151 |
-
|
| 152 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
| 153 |
)
|
| 154 |
-
.permute(0, 3, 1, 2)
|
| 155 |
-
.to(DEVICE)
|
| 156 |
-
)
|
| 157 |
|
| 158 |
-
|
| 159 |
-
|
| 160 |
-
|
| 161 |
-
|
| 162 |
-
|
| 163 |
-
|
| 164 |
-
|
| 165 |
-
|
| 166 |
-
|
| 167 |
-
|
| 168 |
-
|
| 169 |
-
|
| 170 |
-
|
| 171 |
-
|
| 172 |
-
|
| 173 |
-
|
| 174 |
-
|
| 175 |
-
|
| 176 |
-
|
| 177 |
-
|
| 178 |
-
|
| 179 |
-
|
| 180 |
-
|
| 181 |
-
|
| 182 |
-
|
| 183 |
-
|
| 184 |
-
|
| 185 |
-
|
| 186 |
-
|
| 187 |
-
|
| 188 |
-
|
| 189 |
-
|
| 190 |
-
|
| 191 |
-
|
| 192 |
-
|
| 193 |
|
| 194 |
-
|
| 195 |
-
|
| 196 |
-
|
| 197 |
-
|
| 198 |
-
|
| 199 |
-
|
| 200 |
-
|
| 201 |
-
|
| 202 |
-
|
| 203 |
-
|
| 204 |
|
| 205 |
-
|
|
|
|
|
|
|
|
|
|
| 206 |
|
| 207 |
def gradio_generate(image: str, seed: int = 0, num_inference_steps: int = 50, guidance_scale: float = 7.5, simplify: bool = True, target_face_num: int = DEFAULT_FACE_NUMBER):
|
| 208 |
-
|
| 209 |
-
|
| 210 |
-
|
| 211 |
-
|
| 212 |
-
|
| 213 |
-
|
| 214 |
-
|
| 215 |
-
|
| 216 |
-
|
| 217 |
-
|
| 218 |
-
|
| 219 |
-
|
| 220 |
-
|
| 221 |
-
|
| 222 |
-
|
| 223 |
-
|
| 224 |
-
|
| 225 |
-
|
| 226 |
-
|
| 227 |
-
|
| 228 |
-
|
| 229 |
-
|
| 230 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 231 |
|
| 232 |
def start_session(req: gr.Request):
|
| 233 |
-
|
| 234 |
-
|
| 235 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
| 236 |
|
| 237 |
def end_session(req: gr.Request):
|
| 238 |
-
|
| 239 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 240 |
|
| 241 |
def get_random_seed(randomize_seed, seed):
|
| 242 |
-
|
| 243 |
-
|
| 244 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 245 |
|
| 246 |
@spaces.GPU()
|
| 247 |
@torch.no_grad()
|
| 248 |
def run_segmentation(image: str):
|
| 249 |
-
|
| 250 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 251 |
|
| 252 |
@spaces.GPU(duration=90)
|
| 253 |
@torch.no_grad()
|
| 254 |
def image_to_3d(
|
| 255 |
-
image
|
| 256 |
seed: int,
|
| 257 |
num_inference_steps: int,
|
| 258 |
guidance_scale: float,
|
|
@@ -260,130 +314,162 @@ def image_to_3d(
|
|
| 260 |
target_face_num: int,
|
| 261 |
req: gr.Request
|
| 262 |
):
|
| 263 |
-
|
| 264 |
-
|
| 265 |
-
|
| 266 |
-
|
| 267 |
-
|
| 268 |
-
|
| 269 |
-
|
| 270 |
-
|
| 271 |
-
|
| 272 |
-
|
| 273 |
-
|
| 274 |
-
|
| 275 |
-
|
| 276 |
-
|
| 277 |
-
|
| 278 |
-
|
| 279 |
-
|
| 280 |
-
|
| 281 |
-
|
| 282 |
-
|
| 283 |
-
|
| 284 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 285 |
|
| 286 |
@spaces.GPU(duration=120)
|
| 287 |
@torch.no_grad()
|
| 288 |
def run_texture(image: Image, mesh_path: str, seed: int, req: gr.Request):
|
| 289 |
-
|
| 290 |
-
|
| 291 |
-
|
| 292 |
-
|
| 293 |
-
|
| 294 |
-
|
| 295 |
-
|
| 296 |
-
|
| 297 |
-
|
| 298 |
-
|
| 299 |
-
|
| 300 |
-
|
| 301 |
-
|
| 302 |
-
|
| 303 |
-
|
| 304 |
-
|
| 305 |
-
|
| 306 |
-
|
| 307 |
-
|
| 308 |
-
|
| 309 |
-
|
| 310 |
-
|
| 311 |
-
|
| 312 |
-
|
| 313 |
-
|
| 314 |
-
|
| 315 |
-
|
| 316 |
-
|
| 317 |
-
|
| 318 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 319 |
)
|
| 320 |
-
.permute(0, 3, 1, 2)
|
| 321 |
-
.to(DEVICE)
|
| 322 |
-
)
|
| 323 |
|
| 324 |
-
|
| 325 |
-
|
| 326 |
-
|
| 327 |
-
|
| 328 |
-
|
| 329 |
-
|
| 330 |
-
|
| 331 |
-
|
| 332 |
-
|
| 333 |
-
|
| 334 |
-
|
| 335 |
-
|
| 336 |
-
|
| 337 |
-
|
| 338 |
-
|
| 339 |
-
|
| 340 |
-
|
| 341 |
-
|
| 342 |
-
|
| 343 |
-
|
| 344 |
-
|
| 345 |
-
|
| 346 |
-
|
| 347 |
-
|
| 348 |
-
|
| 349 |
-
|
| 350 |
-
|
| 351 |
-
|
| 352 |
-
|
| 353 |
-
|
| 354 |
-
|
| 355 |
-
|
| 356 |
-
|
| 357 |
-
|
| 358 |
-
|
| 359 |
|
| 360 |
-
|
| 361 |
-
|
| 362 |
-
|
| 363 |
-
|
| 364 |
-
|
| 365 |
-
|
| 366 |
-
|
| 367 |
-
|
| 368 |
-
|
| 369 |
-
|
| 370 |
|
| 371 |
-
|
| 372 |
-
|
| 373 |
-
|
| 374 |
-
|
| 375 |
-
|
| 376 |
-
|
| 377 |
-
|
| 378 |
-
|
| 379 |
-
|
| 380 |
-
|
| 381 |
-
|
| 382 |
-
|
| 383 |
-
|
| 384 |
-
|
| 385 |
-
|
| 386 |
-
)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 387 |
|
| 388 |
HEADER = """
|
| 389 |
# 🌌 PolyGenixAI: Craft 3D Worlds with Cosmic Precision
|
|
@@ -469,105 +555,116 @@ HEADER = """
|
|
| 469 |
"""
|
| 470 |
|
| 471 |
# Gradio web interface
|
| 472 |
-
|
| 473 |
-
|
| 474 |
-
with gr.
|
| 475 |
-
|
| 476 |
-
|
| 477 |
-
|
| 478 |
-
|
| 479 |
-
|
| 480 |
-
|
| 481 |
-
|
| 482 |
-
|
| 483 |
-
|
| 484 |
-
|
| 485 |
-
|
| 486 |
-
|
| 487 |
-
|
| 488 |
-
|
| 489 |
-
|
| 490 |
-
|
| 491 |
-
|
| 492 |
-
|
| 493 |
-
|
| 494 |
-
|
| 495 |
-
|
| 496 |
-
|
| 497 |
-
|
| 498 |
-
label="
|
| 499 |
-
|
| 500 |
-
|
| 501 |
-
|
| 502 |
-
|
| 503 |
-
|
| 504 |
-
|
| 505 |
-
|
| 506 |
-
|
| 507 |
-
|
| 508 |
-
|
| 509 |
-
|
| 510 |
-
|
| 511 |
-
|
| 512 |
-
|
| 513 |
-
|
| 514 |
-
|
| 515 |
-
|
| 516 |
-
|
| 517 |
-
|
| 518 |
-
|
| 519 |
-
|
| 520 |
-
|
| 521 |
-
|
| 522 |
-
|
| 523 |
-
|
| 524 |
-
|
| 525 |
-
|
| 526 |
-
|
| 527 |
-
|
| 528 |
-
|
| 529 |
-
|
| 530 |
-
|
| 531 |
-
|
| 532 |
-
gr.
|
| 533 |
-
|
| 534 |
-
|
| 535 |
-
|
| 536 |
-
|
| 537 |
-
|
| 538 |
-
|
| 539 |
-
|
| 540 |
-
|
| 541 |
-
|
| 542 |
-
|
| 543 |
-
|
| 544 |
-
|
| 545 |
-
|
| 546 |
-
|
| 547 |
-
|
| 548 |
-
|
| 549 |
-
|
| 550 |
-
|
| 551 |
-
|
| 552 |
-
|
| 553 |
-
|
| 554 |
-
|
| 555 |
-
|
| 556 |
-
|
| 557 |
-
|
| 558 |
-
|
| 559 |
-
|
| 560 |
-
|
| 561 |
-
|
| 562 |
-
|
| 563 |
-
|
| 564 |
-
|
| 565 |
-
|
| 566 |
-
|
| 567 |
-
|
| 568 |
-
|
| 569 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 570 |
|
| 571 |
if __name__ == "__main__":
|
| 572 |
-
|
| 573 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 12 |
import subprocess
|
| 13 |
import shutil
|
| 14 |
import base64
|
| 15 |
+
import logging
|
| 16 |
+
|
| 17 |
+
# Set up logging
|
| 18 |
+
logging.basicConfig(level=logging.INFO, format='%(asctime)s - %(levelname)s - %(message)s')
|
| 19 |
+
logger = logging.getLogger(__name__)
|
| 20 |
|
| 21 |
# Install additional dependencies
|
| 22 |
+
try:
|
| 23 |
+
subprocess.run("pip install spandrel==0.4.1 --no-deps", shell=True, check=True)
|
| 24 |
+
except Exception as e:
|
| 25 |
+
logger.error(f"Failed to install spandrel: {str(e)}")
|
| 26 |
+
raise
|
| 27 |
|
| 28 |
DEVICE = "cuda" if torch.cuda.is_available() else "cpu"
|
| 29 |
DTYPE = torch.float16
|
| 30 |
|
| 31 |
+
logger.info(f"Using device: {DEVICE}")
|
| 32 |
|
| 33 |
DEFAULT_FACE_NUMBER = 100000
|
| 34 |
MAX_SEED = np.iinfo(np.int32).max
|
|
|
|
| 43 |
|
| 44 |
TRIPOSG_CODE_DIR = "./triposg"
|
| 45 |
if not os.path.exists(TRIPOSG_CODE_DIR):
|
| 46 |
+
logger.info(f"Cloning TripoSG repository to {TRIPOSG_CODE_DIR}")
|
| 47 |
os.system(f"git clone {TRIPOSG_REPO_URL} {TRIPOSG_CODE_DIR}")
|
| 48 |
|
| 49 |
MV_ADAPTER_CODE_DIR = "./mv_adapter"
|
| 50 |
if not os.path.exists(MV_ADAPTER_CODE_DIR):
|
| 51 |
+
logger.info(f"Cloning MV-Adapter repository to {MV_ADAPTER_CODE_DIR}")
|
| 52 |
os.system(f"git clone {MV_ADAPTER_REPO_URL} {MV_ADAPTER_CODE_DIR} && cd {MV_ADAPTER_CODE_DIR} && git checkout 7d37a97e9bc223cdb8fd26a76bd8dd46504c7c3d")
|
| 53 |
|
| 54 |
import sys
|
|
|
|
| 57 |
sys.path.append(MV_ADAPTER_CODE_DIR)
|
| 58 |
sys.path.append(os.path.join(MV_ADAPTER_CODE_DIR, "scripts"))
|
| 59 |
|
| 60 |
+
try:
|
| 61 |
+
# triposg
|
| 62 |
+
from image_process import prepare_image
|
| 63 |
+
from briarmbg import BriaRMBG
|
| 64 |
+
snapshot_download("briaai/RMBG-1.4", local_dir=RMBG_PRETRAINED_MODEL)
|
| 65 |
+
rmbg_net = BriaRMBG.from_pretrained(RMBG_PRETRAINED_MODEL).to(DEVICE)
|
| 66 |
+
rmbg_net.eval()
|
| 67 |
+
from triposg.pipelines.pipeline_triposg import TripoSGPipeline
|
| 68 |
+
snapshot_download("VAST-AI/TripoSG", local_dir=TRIPOSG_PRETRAINED_MODEL)
|
| 69 |
+
triposg_pipe = TripoSGPipeline.from_pretrained(TRIPOSG_PRETRAINED_MODEL).to(DEVICE, DTYPE)
|
| 70 |
+
except Exception as e:
|
| 71 |
+
logger.error(f"Failed to load TripoSG models: {str(e)}")
|
| 72 |
+
raise
|
| 73 |
+
|
| 74 |
+
try:
|
| 75 |
+
# mv adapter
|
| 76 |
+
NUM_VIEWS = 6
|
| 77 |
+
from inference_ig2mv_sdxl import prepare_pipeline, preprocess_image, remove_bg
|
| 78 |
+
from mvadapter.utils import get_orthogonal_camera, tensor_to_image, make_image_grid
|
| 79 |
+
from mvadapter.utils.render import NVDiffRastContextWrapper, load_mesh, render
|
| 80 |
+
mv_adapter_pipe = prepare_pipeline(
|
| 81 |
+
base_model="stabilityai/stable-diffusion-xl-base-1.0",
|
| 82 |
+
vae_model="madebyollin/sdxl-vae-fp16-fix",
|
| 83 |
+
unet_model=None,
|
| 84 |
+
lora_model=None,
|
| 85 |
+
adapter_path="huanngzh/mv-adapter",
|
| 86 |
+
scheduler=None,
|
| 87 |
+
num_views=NUM_VIEWS,
|
| 88 |
+
device=DEVICE,
|
| 89 |
+
dtype=torch.float16,
|
| 90 |
+
)
|
| 91 |
+
birefnet = AutoModelForImageSegmentation.from_pretrained(
|
| 92 |
+
"ZhengPeng7/BiRefNet", trust_remote_code=True
|
| 93 |
+
).to(DEVICE)
|
| 94 |
+
transform_image = transforms.Compose(
|
| 95 |
+
[
|
| 96 |
+
transforms.Resize((1024, 1024)),
|
| 97 |
+
transforms.ToTensor(),
|
| 98 |
+
transforms.Normalize([0.485, 0.456, 0.406], [0.229, 0.224, 0.225]),
|
| 99 |
+
]
|
| 100 |
+
)
|
| 101 |
+
remove_bg_fn = lambda x: remove_bg(x, birefnet, transform_image, DEVICE)
|
| 102 |
+
except Exception as e:
|
| 103 |
+
logger.error(f"Failed to load MV-Adapter models: {str(e)}")
|
| 104 |
+
raise
|
| 105 |
+
|
| 106 |
+
try:
|
| 107 |
+
if not os.path.exists("checkpoints/RealESRGAN_x2plus.pth"):
|
| 108 |
+
hf_hub_download("dtarnow/UPscaler", filename="RealESRGAN_x2plus.pth", local_dir="checkpoints")
|
| 109 |
+
if not os.path.exists("checkpoints/big-lama.pt"):
|
| 110 |
+
subprocess.run("wget -P checkpoints/ https://github.com/Sanster/models/releases/download/add_big_lama/big-lama.pt", shell=True, check=True)
|
| 111 |
+
except Exception as e:
|
| 112 |
+
logger.error(f"Failed to download checkpoints: {str(e)}")
|
| 113 |
+
raise
|
| 114 |
|
| 115 |
def get_random_hex():
|
| 116 |
random_bytes = os.urandom(8)
|
|
|
|
| 119 |
|
| 120 |
@spaces.GPU(duration=180)
|
| 121 |
def run_full(image: str, seed: int = 0, num_inference_steps: int = 50, guidance_scale: float = 7.5, simplify: bool = True, target_face_num: int = DEFAULT_FACE_NUMBER, req=None):
|
| 122 |
+
try:
|
| 123 |
+
image_seg = prepare_image(image, bg_color=np.array([1.0, 1.0, 1.0]), rmbg_net=rmbg_net)
|
| 124 |
+
|
| 125 |
+
outputs = triposg_pipe(
|
| 126 |
+
image=image_seg,
|
| 127 |
+
generator=torch.Generator(device=triposg_pipe.device).manual_seed(seed),
|
| 128 |
+
num_inference_steps=num_inference_steps,
|
| 129 |
+
guidance_scale=guidance_scale
|
| 130 |
+
).samples[0]
|
| 131 |
+
logger.info("Mesh extraction done")
|
| 132 |
+
mesh = trimesh.Trimesh(outputs[0].astype(np.float32), np.ascontiguousarray(outputs[1]))
|
| 133 |
+
|
| 134 |
+
if simplify:
|
| 135 |
+
logger.info("Starting mesh simplification")
|
| 136 |
+
from utils import simplify_mesh
|
| 137 |
+
mesh = simplify_mesh(mesh, target_face_num)
|
| 138 |
+
|
| 139 |
+
save_dir = os.path.join(TMP_DIR, "examples")
|
| 140 |
+
os.makedirs(save_dir, exist_ok=True)
|
| 141 |
+
mesh_path = os.path.join(save_dir, f"polygenixai_{get_random_hex()}.glb")
|
| 142 |
+
mesh.export(mesh_path)
|
| 143 |
+
logger.info(f"Saved mesh to {mesh_path}")
|
| 144 |
+
|
| 145 |
+
torch.cuda.empty_cache()
|
| 146 |
+
|
| 147 |
+
height, width = 768, 768
|
| 148 |
+
cameras = get_orthogonal_camera(
|
| 149 |
+
elevation_deg=[0, 0, 0, 0, 89.99, -89.99],
|
| 150 |
+
distance=[1.8] * NUM_VIEWS,
|
| 151 |
+
left=-0.55,
|
| 152 |
+
right=0.55,
|
| 153 |
+
bottom=-0.55,
|
| 154 |
+
top=0.55,
|
| 155 |
+
azimuth_deg=[x - 90 for x in [0, 90, 180, 270, 180, 180]],
|
| 156 |
+
device=DEVICE,
|
| 157 |
+
)
|
| 158 |
+
ctx = NVDiffRastContextWrapper(device=DEVICE, context_type="cuda")
|
| 159 |
+
|
| 160 |
+
mesh = load_mesh(mesh_path, rescale=True, device=DEVICE)
|
| 161 |
+
render_out = render(
|
| 162 |
+
ctx,
|
| 163 |
+
mesh,
|
| 164 |
+
cameras,
|
| 165 |
+
height=height,
|
| 166 |
+
width=width,
|
| 167 |
+
render_attr=False,
|
| 168 |
+
normal_background=0.0,
|
| 169 |
+
)
|
| 170 |
+
control_images = (
|
| 171 |
+
torch.cat(
|
| 172 |
+
[
|
| 173 |
+
(render_out.pos + 0.5).clamp(0, 1),
|
| 174 |
+
(render_out.normal / 2 + 0.5).clamp(0, 1),
|
| 175 |
+
],
|
| 176 |
+
dim=-1,
|
| 177 |
+
)
|
| 178 |
+
.permute(0, 3, 1, 2)
|
| 179 |
+
.to(DEVICE)
|
| 180 |
)
|
|
|
|
|
|
|
|
|
|
| 181 |
|
| 182 |
+
image = Image.open(image)
|
| 183 |
+
image = remove_bg_fn(image)
|
| 184 |
+
image = preprocess_image(image, height, width)
|
| 185 |
+
|
| 186 |
+
pipe_kwargs = {}
|
| 187 |
+
if seed != -1 and isinstance(seed, int):
|
| 188 |
+
pipe_kwargs["generator"] = torch.Generator(device=DEVICE).manual_seed(seed)
|
| 189 |
+
|
| 190 |
+
images = mv_adapter_pipe(
|
| 191 |
+
"high quality",
|
| 192 |
+
height=height,
|
| 193 |
+
width=width,
|
| 194 |
+
num_inference_steps=15,
|
| 195 |
+
guidance_scale=3.0,
|
| 196 |
+
num_images_per_prompt=NUM_VIEWS,
|
| 197 |
+
control_image=control_images,
|
| 198 |
+
control_conditioning_scale=1.0,
|
| 199 |
+
reference_image=image,
|
| 200 |
+
reference_conditioning_scale=1.0,
|
| 201 |
+
negative_prompt="watermark, ugly, deformed, noisy, blurry, low contrast",
|
| 202 |
+
cross_attention_kwargs={"scale": 1.0},
|
| 203 |
+
**pipe_kwargs,
|
| 204 |
+
).images
|
| 205 |
+
|
| 206 |
+
torch.cuda.empty_cache()
|
| 207 |
+
|
| 208 |
+
mv_image_path = os.path.join(save_dir, f"polygenixai_mv_{get_random_hex()}.png")
|
| 209 |
+
make_image_grid(images, rows=1).save(mv_image_path)
|
| 210 |
+
|
| 211 |
+
from texture import TexturePipeline, ModProcessConfig
|
| 212 |
+
texture_pipe = TexturePipeline(
|
| 213 |
+
upscaler_ckpt_path="checkpoints/RealESRGAN_x2plus.pth",
|
| 214 |
+
inpaint_ckpt_path="checkpoints/big-lama.pt",
|
| 215 |
+
device=DEVICE,
|
| 216 |
+
)
|
| 217 |
|
| 218 |
+
textured_glb_path = texture_pipe(
|
| 219 |
+
mesh_path=mesh_path,
|
| 220 |
+
save_dir=save_dir,
|
| 221 |
+
save_name=f"polygenixai_texture_mesh_{get_random_hex()}.glb",
|
| 222 |
+
uv_unwarp=True,
|
| 223 |
+
uv_size=4096,
|
| 224 |
+
rgb_path=mv_image_path,
|
| 225 |
+
rgb_process_config=ModProcessConfig(view_upscale=True, inpaint_mode="view"),
|
| 226 |
+
camera_azimuth_deg=[x - 90 for x in [0, 90, 180, 270, 180, 180]],
|
| 227 |
+
)
|
| 228 |
|
| 229 |
+
return image_seg, mesh_path, textured_glb_path
|
| 230 |
+
except Exception as e:
|
| 231 |
+
logger.error(f"Error in run_full: {str(e)}")
|
| 232 |
+
raise
|
| 233 |
|
| 234 |
def gradio_generate(image: str, seed: int = 0, num_inference_steps: int = 50, guidance_scale: float = 7.5, simplify: bool = True, target_face_num: int = DEFAULT_FACE_NUMBER):
|
| 235 |
+
try:
|
| 236 |
+
logger.info("Starting gradio_generate")
|
| 237 |
+
# Verify API key
|
| 238 |
+
api_key = os.getenv("POLYGENIX_API_KEY", "your-secret-api-key")
|
| 239 |
+
request = gr.Request()
|
| 240 |
+
if not request.headers.get("x-api-key") == api_key:
|
| 241 |
+
logger.error("Invalid API key")
|
| 242 |
+
raise ValueError("Invalid API key")
|
| 243 |
+
|
| 244 |
+
# Handle base64 image or file path
|
| 245 |
+
if image.startswith("data:image"):
|
| 246 |
+
logger.info("Processing base64 image")
|
| 247 |
+
base64_string = image.split(",")[1]
|
| 248 |
+
image_data = base64.b64decode(base64_string)
|
| 249 |
+
temp_image_path = os.path.join(TMP_DIR, f"input_{get_random_hex()}.png")
|
| 250 |
+
with open(temp_image_path, "wb") as f:
|
| 251 |
+
f.write(image_data)
|
| 252 |
+
else:
|
| 253 |
+
temp_image_path = image
|
| 254 |
+
if not os.path.exists(temp_image_path):
|
| 255 |
+
logger.error(f"Image file not found: {temp_image_path}")
|
| 256 |
+
raise ValueError("Invalid or missing image file")
|
| 257 |
+
|
| 258 |
+
image_seg, mesh_path, textured_glb_path = run_full(temp_image_path, seed, num_inference_steps, guidance_scale, simplify, target_face_num, req=None)
|
| 259 |
+
session_hash = os.path.basename(os.path.dirname(textured_glb_path))
|
| 260 |
+
logger.info(f"Generated model at /files/{session_hash}/{os.path.basename(textured_glb_path)}")
|
| 261 |
+
return {"file_url": f"/files/{session_hash}/{os.path.basename(textured_glb_path)}"}
|
| 262 |
+
except Exception as e:
|
| 263 |
+
logger.error(f"Error in gradio_generate: {str(e)}")
|
| 264 |
+
raise
|
| 265 |
|
| 266 |
def start_session(req: gr.Request):
|
| 267 |
+
try:
|
| 268 |
+
save_dir = os.path.join(TMP_DIR, str(req.session_hash))
|
| 269 |
+
os.makedirs(save_dir, exist_ok=True)
|
| 270 |
+
logger.info(f"Started session, created directory: {save_dir}")
|
| 271 |
+
except Exception as e:
|
| 272 |
+
logger.error(f"Error in start_session: {str(e)}")
|
| 273 |
+
raise
|
| 274 |
|
| 275 |
def end_session(req: gr.Request):
|
| 276 |
+
try:
|
| 277 |
+
save_dir = os.path.join(TMP_DIR, str(req.session_hash))
|
| 278 |
+
shutil.rmtree(save_dir)
|
| 279 |
+
logger.info(f"Ended session, removed directory: {save_dir}")
|
| 280 |
+
except Exception as e:
|
| 281 |
+
logger.error(f"Error in end_session: {str(e)}")
|
| 282 |
+
raise
|
| 283 |
|
| 284 |
def get_random_seed(randomize_seed, seed):
|
| 285 |
+
try:
|
| 286 |
+
if randomize_seed:
|
| 287 |
+
seed = random.randint(0, MAX_SEED)
|
| 288 |
+
logger.info(f"Generated seed: {seed}")
|
| 289 |
+
return seed
|
| 290 |
+
except Exception as e:
|
| 291 |
+
logger.error(f"Error in get_random_seed: {str(e)}")
|
| 292 |
+
raise
|
| 293 |
|
| 294 |
@spaces.GPU()
|
| 295 |
@torch.no_grad()
|
| 296 |
def run_segmentation(image: str):
|
| 297 |
+
try:
|
| 298 |
+
logger.info("Running segmentation")
|
| 299 |
+
image = prepare_image(image, bg_color=np.array([1.0, 1.0, 1.0]), rmbg_net=rmbg_net)
|
| 300 |
+
logger.info("Segmentation complete")
|
| 301 |
+
return image
|
| 302 |
+
except Exception as e:
|
| 303 |
+
logger.error(f"Error in run_segmentation: {str(e)}")
|
| 304 |
+
raise
|
| 305 |
|
| 306 |
@spaces.GPU(duration=90)
|
| 307 |
@torch.no_grad()
|
| 308 |
def image_to_3d(
|
| 309 |
+
image, # Changed to accept FileData dict or PIL Image
|
| 310 |
seed: int,
|
| 311 |
num_inference_steps: int,
|
| 312 |
guidance_scale: float,
|
|
|
|
| 314 |
target_face_num: int,
|
| 315 |
req: gr.Request
|
| 316 |
):
|
| 317 |
+
try:
|
| 318 |
+
logger.info("Running image_to_3d")
|
| 319 |
+
# Handle FileData dict from gradio_client
|
| 320 |
+
if isinstance(image, dict):
|
| 321 |
+
image_path = image.get("path") or image.get("url")
|
| 322 |
+
if not image_path:
|
| 323 |
+
logger.error("Invalid image input: no path or URL provided")
|
| 324 |
+
raise ValueError("Invalid image input: no path or URL provided")
|
| 325 |
+
image = Image.open(image_path)
|
| 326 |
+
elif not isinstance(image, Image.Image):
|
| 327 |
+
logger.error(f"Invalid image type: {type(image)}")
|
| 328 |
+
raise ValueError(f"Expected PIL Image or FileData dict, got {type(image)}")
|
| 329 |
+
|
| 330 |
+
outputs = triposg_pipe(
|
| 331 |
+
image=image,
|
| 332 |
+
generator=torch.Generator(device=triposg_pipe.device).manual_seed(seed),
|
| 333 |
+
num_inference_steps=num_inference_steps,
|
| 334 |
+
guidance_scale=guidance_scale
|
| 335 |
+
).samples[0]
|
| 336 |
+
logger.info("Mesh extraction done")
|
| 337 |
+
mesh = trimesh.Trimesh(outputs[0].astype(np.float32), np.ascontiguousarray(outputs[1]))
|
| 338 |
+
|
| 339 |
+
if simplify:
|
| 340 |
+
logger.info("Starting mesh simplification")
|
| 341 |
+
try:
|
| 342 |
+
from utils import simplify_mesh
|
| 343 |
+
mesh = simplify_mesh(mesh, target_face_num)
|
| 344 |
+
except ImportError as e:
|
| 345 |
+
logger.error(f"Failed to import simplify_mesh: {str(e)}")
|
| 346 |
+
raise
|
| 347 |
+
|
| 348 |
+
save_dir = os.path.join(TMP_DIR, str(req.session_hash))
|
| 349 |
+
os.makedirs(save_dir, exist_ok=True)
|
| 350 |
+
mesh_path = os.path.join(save_dir, f"polygenixai_{get_random_hex()}.glb")
|
| 351 |
+
mesh.export(mesh_path)
|
| 352 |
+
logger.info(f"Saved mesh to {mesh_path}")
|
| 353 |
+
|
| 354 |
+
torch.cuda.empty_cache()
|
| 355 |
+
return {"path": mesh_path}
|
| 356 |
+
except Exception as e:
|
| 357 |
+
logger.error(f"Error in image_to_3d: {str(e)}")
|
| 358 |
+
raise
|
| 359 |
|
| 360 |
@spaces.GPU(duration=120)
|
| 361 |
@torch.no_grad()
|
| 362 |
def run_texture(image: Image, mesh_path: str, seed: int, req: gr.Request):
|
| 363 |
+
try:
|
| 364 |
+
logger.info("Running texture generation")
|
| 365 |
+
height, width = 768, 768
|
| 366 |
+
cameras = get_orthogonal_camera(
|
| 367 |
+
elevation_deg=[0, 0, 0, 0, 89.99, -89.99],
|
| 368 |
+
distance=[1.8] * NUM_VIEWS,
|
| 369 |
+
left=-0.55,
|
| 370 |
+
right=0.55,
|
| 371 |
+
bottom=-0.55,
|
| 372 |
+
top=0.55,
|
| 373 |
+
azimuth_deg=[x - 90 for x in [0, 90, 180, 270, 180, 180]],
|
| 374 |
+
device=DEVICE,
|
| 375 |
+
)
|
| 376 |
+
ctx = NVDiffRastContextWrapper(device=DEVICE, context_type="cuda")
|
| 377 |
+
|
| 378 |
+
mesh = load_mesh(mesh_path, rescale=True, device=DEVICE)
|
| 379 |
+
render_out = render(
|
| 380 |
+
ctx,
|
| 381 |
+
mesh,
|
| 382 |
+
cameras,
|
| 383 |
+
height=height,
|
| 384 |
+
width=width,
|
| 385 |
+
render_attr=False,
|
| 386 |
+
normal_background=0.0,
|
| 387 |
+
)
|
| 388 |
+
control_images = (
|
| 389 |
+
torch.cat(
|
| 390 |
+
[
|
| 391 |
+
(render_out.pos + 0.5).clamp(0, 1),
|
| 392 |
+
(render_out.normal / 2 + 0.5).clamp(0, 1),
|
| 393 |
+
],
|
| 394 |
+
dim=-1,
|
| 395 |
+
)
|
| 396 |
+
.permute(0, 3, 1, 2)
|
| 397 |
+
.to(DEVICE)
|
| 398 |
)
|
|
|
|
|
|
|
|
|
|
| 399 |
|
| 400 |
+
image = Image.open(image)
|
| 401 |
+
image = remove_bg_fn(image)
|
| 402 |
+
image = preprocess_image(image, height, width)
|
| 403 |
+
|
| 404 |
+
pipe_kwargs = {}
|
| 405 |
+
if seed != -1 and isinstance(seed, int):
|
| 406 |
+
pipe_kwargs["generator"] = torch.Generator(device=DEVICE).manual_seed(seed)
|
| 407 |
+
|
| 408 |
+
images = mv_adapter_pipe(
|
| 409 |
+
"high quality",
|
| 410 |
+
height=height,
|
| 411 |
+
width=width,
|
| 412 |
+
num_inference_steps=15,
|
| 413 |
+
guidance_scale=3.0,
|
| 414 |
+
num_images_per_prompt=NUM_VIEWS,
|
| 415 |
+
control_image=control_images,
|
| 416 |
+
control_conditioning_scale=1.0,
|
| 417 |
+
reference_image=image,
|
| 418 |
+
reference_conditioning_scale=1.0,
|
| 419 |
+
negative_prompt="watermark, ugly, deformed, noisy, blurry, low contrast",
|
| 420 |
+
cross_attention_kwargs={"scale": 1.0},
|
| 421 |
+
**pipe_kwargs,
|
| 422 |
+
).images
|
| 423 |
+
|
| 424 |
+
torch.cuda.empty_cache()
|
| 425 |
+
|
| 426 |
+
mv_image_path = os.path.join(save_dir, f"polygenixai_mv_{get_random_hex()}.png")
|
| 427 |
+
make_image_grid(images, rows=1).save(mv_image_path)
|
| 428 |
+
|
| 429 |
+
from texture import TexturePipeline, ModProcessConfig
|
| 430 |
+
texture_pipe = TexturePipeline(
|
| 431 |
+
upscaler_ckpt_path="checkpoints/RealESRGAN_x2plus.pth",
|
| 432 |
+
inpaint_ckpt_path="checkpoints/big-lama.pt",
|
| 433 |
+
device=DEVICE,
|
| 434 |
+
)
|
| 435 |
|
| 436 |
+
textured_glb_path = texture_pipe(
|
| 437 |
+
mesh_path=mesh_path,
|
| 438 |
+
save_dir=save_dir,
|
| 439 |
+
save_name=f"polygenixai_texture_mesh_{get_random_hex()}.glb",
|
| 440 |
+
uv_unwarp=True,
|
| 441 |
+
uv_size=4096,
|
| 442 |
+
rgb_path=mv_image_path,
|
| 443 |
+
rgb_process_config=ModProcessConfig(view_upscale=True, inpaint_mode="view"),
|
| 444 |
+
camera_azimuth_deg=[x - 90 for x in [0, 90, 180, 270, 180, 180]],
|
| 445 |
+
)
|
| 446 |
|
| 447 |
+
logger.info(f"Textured model saved to {textured_glb_path}")
|
| 448 |
+
return {"path": textured_glb_path}
|
| 449 |
+
except Exception as e:
|
| 450 |
+
logger.error(f"Error in run_texture: {str(e)}")
|
| 451 |
+
raise
|
| 452 |
+
|
| 453 |
+
# Define Gradio API endpoint
|
| 454 |
+
try:
|
| 455 |
+
logger.info("Initializing Gradio API interface")
|
| 456 |
+
api_interface = gr.Interface(
|
| 457 |
+
fn=gradio_generate,
|
| 458 |
+
inputs=[
|
| 459 |
+
gr.Image(type="filepath", label="Image"),
|
| 460 |
+
gr.Number(label="Seed", value=0, precision=0),
|
| 461 |
+
gr.Number(label="Inference Steps", value=50, precision=0),
|
| 462 |
+
gr.Number(label="Guidance Scale", value=7.5),
|
| 463 |
+
gr.Checkbox(label="Simplify Mesh", value=True),
|
| 464 |
+
gr.Number(label="Target Face Number", value=DEFAULT_FACE_NUMBER, precision=0)
|
| 465 |
+
],
|
| 466 |
+
outputs="json",
|
| 467 |
+
api_name="/api/generate"
|
| 468 |
+
)
|
| 469 |
+
logger.info("Gradio API interface initialized successfully")
|
| 470 |
+
except Exception as e:
|
| 471 |
+
logger.error(f"Failed to initialize Gradio API interface: {str(e)}")
|
| 472 |
+
raise
|
| 473 |
|
| 474 |
HEADER = """
|
| 475 |
# 🌌 PolyGenixAI: Craft 3D Worlds with Cosmic Precision
|
|
|
|
| 555 |
"""
|
| 556 |
|
| 557 |
# Gradio web interface
|
| 558 |
+
try:
|
| 559 |
+
logger.info("Initializing Gradio Blocks interface")
|
| 560 |
+
with gr.Blocks(title="PolyGenixAI", css="body { background-color: #1A1A1A; } .gr-panel { background-color: #2D2D2D; }") as demo:
|
| 561 |
+
gr.Markdown(HEADER)
|
| 562 |
+
with gr.Tabs(elem_classes="gr-tab"):
|
| 563 |
+
with gr.Tab("Create 3D Model"):
|
| 564 |
+
with gr.Row():
|
| 565 |
+
with gr.Column(scale=1):
|
| 566 |
+
image_prompts = gr.Image(label="Upload Image", type="filepath", height=300, elem_classes="gr-panel")
|
| 567 |
+
seg_image = gr.Image(label="Preview Segmentation", type="pil", format="png", interactive=False, height=300, elem_classes="gr-panel")
|
| 568 |
+
with gr.Accordion("Style & Settings", open=True, elem_classes="gr-accordion"):
|
| 569 |
+
style_filter = gr.Dropdown(
|
| 570 |
+
choices=["None", "Realistic", "Fantasy", "Cartoon", "Sci-Fi", "Vintage", "Cosmic", "Neon"],
|
| 571 |
+
label="Style Filter",
|
| 572 |
+
value="None",
|
| 573 |
+
info="Select a style to inspire your 3D model (optional)",
|
| 574 |
+
elem_classes="gr-dropdown"
|
| 575 |
+
)
|
| 576 |
+
seed = gr.Slider(
|
| 577 |
+
label="Seed",
|
| 578 |
+
minimum=0,
|
| 579 |
+
maximum=MAX_SEED,
|
| 580 |
+
step=1,
|
| 581 |
+
value=0,
|
| 582 |
+
elem_classes="gr-slider"
|
| 583 |
+
)
|
| 584 |
+
randomize_seed = gr.Checkbox(label="Randomize Seed", value=True)
|
| 585 |
+
num_inference_steps = gr.Slider(
|
| 586 |
+
label="Inference Steps",
|
| 587 |
+
minimum=8,
|
| 588 |
+
maximum=50,
|
| 589 |
+
step=1,
|
| 590 |
+
value=50,
|
| 591 |
+
info="Higher steps enhance detail but increase processing time",
|
| 592 |
+
elem_classes="gr-slider"
|
| 593 |
+
)
|
| 594 |
+
guidance_scale = gr.Slider(
|
| 595 |
+
label="Guidance Scale",
|
| 596 |
+
minimum=0.0,
|
| 597 |
+
maximum=20.0,
|
| 598 |
+
step=0.1,
|
| 599 |
+
value=7.0,
|
| 600 |
+
info="Controls adherence to input image",
|
| 601 |
+
elem_classes="gr-slider"
|
| 602 |
+
)
|
| 603 |
+
reduce_face = gr.Checkbox(label="Simplify Mesh", value=True)
|
| 604 |
+
target_face_num = gr.Slider(
|
| 605 |
+
maximum=1000000,
|
| 606 |
+
minimum=10000,
|
| 607 |
+
value=DEFAULT_FACE_NUMBER,
|
| 608 |
+
label="Target Face Number",
|
| 609 |
+
info="Adjust mesh complexity for performance",
|
| 610 |
+
elem_classes="gr-slider"
|
| 611 |
+
)
|
| 612 |
+
gen_button = gr.Button("Generate 3D Model", variant="primary", elem_classes="gr-button-primary")
|
| 613 |
+
gen_texture_button = gr.Button("Apply Texture", variant="secondary", interactive=False, elem_classes="gr-button-secondary")
|
| 614 |
+
with gr.Column(scale=1):
|
| 615 |
+
model_output = gr.Model3D(label="3D Model Preview", interactive=False, height=400, elem_classes="gr-panel")
|
| 616 |
+
textured_model_output = gr.Model3D(label="Textured 3D Model", interactive=False, height=400, elem_classes="gr-panel")
|
| 617 |
+
download_button = gr.Button("Download GLB", variant="secondary", elem_classes="gr-button-secondary")
|
| 618 |
+
with gr.Tab("Cosmic Gallery"):
|
| 619 |
+
gr.Markdown("### Discover Stellar Creations")
|
| 620 |
+
gr.Examples(
|
| 621 |
+
examples=[
|
| 622 |
+
f"{TRIPOSG_CODE_DIR}/assets/example_data/{image}"
|
| 623 |
+
for image in os.listdir(f"{TRIPOSG_CODE_DIR}/assets/example_data")
|
| 624 |
+
],
|
| 625 |
+
fn=run_full,
|
| 626 |
+
inputs=[image_prompts],
|
| 627 |
+
outputs=[seg_image, model_output, textured_model_output],
|
| 628 |
+
cache_examples=True,
|
| 629 |
+
)
|
| 630 |
+
gr.Markdown("Connect with creators in our <a href='https://www.anvilinteractive.com/community' style='color: #A78BFA; text-decoration: none;'>PolyGenixAI Cosmic Community</a>!")
|
| 631 |
+
gen_button.click(
|
| 632 |
+
run_segmentation,
|
| 633 |
+
inputs=[image_prompts],
|
| 634 |
+
outputs=[seg_image]
|
| 635 |
+
).then(
|
| 636 |
+
get_random_seed,
|
| 637 |
+
inputs=[randomize_seed, seed],
|
| 638 |
+
outputs=[seed],
|
| 639 |
+
).then(
|
| 640 |
+
image_to_3d,
|
| 641 |
+
inputs=[
|
| 642 |
+
seg_image,
|
| 643 |
+
seed,
|
| 644 |
+
num_inference_steps,
|
| 645 |
+
guidance_scale,
|
| 646 |
+
reduce_face,
|
| 647 |
+
target_face_num
|
| 648 |
+
],
|
| 649 |
+
outputs=[model_output]
|
| 650 |
+
).then(lambda: gr.Button(interactive=True), outputs=[gen_texture_button])
|
| 651 |
+
gen_texture_button.click(
|
| 652 |
+
run_texture,
|
| 653 |
+
inputs=[image_prompts, model_output, seed],
|
| 654 |
+
outputs=[textured_model_output]
|
| 655 |
+
)
|
| 656 |
+
demo.load(start_session)
|
| 657 |
+
demo.unload(end_session)
|
| 658 |
+
logger.info("Gradio Blocks interface initialized successfully")
|
| 659 |
+
except Exception as e:
|
| 660 |
+
logger.error(f"Failed to initialize Gradio Blocks interface: {str(e)}")
|
| 661 |
+
raise
|
| 662 |
|
| 663 |
if __name__ == "__main__":
|
| 664 |
+
try:
|
| 665 |
+
logger.info("Launching Gradio application")
|
| 666 |
+
demo.launch(server_name="0.0.0.0", server_port=7860, show_error=True)
|
| 667 |
+
logger.info("Gradio application launched successfully")
|
| 668 |
+
except Exception as e:
|
| 669 |
+
logger.error(f"Failed to launch Gradio application: {str(e)}")
|
| 670 |
+
raise
|