Spaces:
Sleeping
Sleeping
Update app.py
Browse files
app.py
CHANGED
|
@@ -8,11 +8,14 @@ import trimesh
|
|
| 8 |
import random
|
| 9 |
from transformers import AutoModelForImageSegmentation
|
| 10 |
from torchvision import transforms
|
| 11 |
-
from huggingface_hub import hf_hub_download, snapshot_download
|
| 12 |
import subprocess
|
| 13 |
import shutil
|
| 14 |
import base64
|
| 15 |
import logging
|
|
|
|
|
|
|
|
|
|
| 16 |
|
| 17 |
# Set up logging
|
| 18 |
logging.basicConfig(level=logging.INFO, format='%(asctime)s - %(levelname)s - %(message)s')
|
|
@@ -25,12 +28,15 @@ except Exception as e:
|
|
| 25 |
logger.error(f"Failed to install spandrel: {str(e)}")
|
| 26 |
raise
|
| 27 |
|
|
|
|
|
|
|
|
|
|
| 28 |
DEVICE = "cuda" if torch.cuda.is_available() else "cpu"
|
| 29 |
DTYPE = torch.float16
|
| 30 |
|
| 31 |
-
logger.info(f"Using device: {DEVICE}")
|
| 32 |
|
| 33 |
-
DEFAULT_FACE_NUMBER =
|
| 34 |
MAX_SEED = np.iinfo(np.int32).max
|
| 35 |
TRIPOSG_REPO_URL = "https://github.com/VAST-AI-Research/TripoSG.git"
|
| 36 |
MV_ADAPTER_REPO_URL = "https://github.com/huanngzh/MV-Adapter.git"
|
|
@@ -93,7 +99,7 @@ try:
|
|
| 93 |
).to(DEVICE)
|
| 94 |
transform_image = transforms.Compose(
|
| 95 |
[
|
| 96 |
-
transforms.Resize((
|
| 97 |
transforms.ToTensor(),
|
| 98 |
transforms.Normalize([0.485, 0.456, 0.406], [0.229, 0.224, 0.225]),
|
| 99 |
]
|
|
@@ -117,10 +123,57 @@ def get_random_hex():
|
|
| 117 |
random_hex = random_bytes.hex()
|
| 118 |
return random_hex
|
| 119 |
|
| 120 |
-
|
| 121 |
-
def
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 122 |
try:
|
|
|
|
|
|
|
|
|
|
| 123 |
image_seg = prepare_image(image, bg_color=np.array([1.0, 1.0, 1.0]), rmbg_net=rmbg_net)
|
|
|
|
|
|
|
| 124 |
|
| 125 |
outputs = triposg_pipe(
|
| 126 |
image=image_seg,
|
|
@@ -141,10 +194,11 @@ def run_full(image: str, seed: int = 0, num_inference_steps: int = 50, guidance_
|
|
| 141 |
mesh_path = os.path.join(save_dir, f"polygenixai_{get_random_hex()}.glb")
|
| 142 |
mesh.export(mesh_path)
|
| 143 |
logger.info(f"Saved mesh to {mesh_path}")
|
|
|
|
| 144 |
|
| 145 |
torch.cuda.empty_cache()
|
| 146 |
|
| 147 |
-
height, width =
|
| 148 |
cameras = get_orthogonal_camera(
|
| 149 |
elevation_deg=[0, 0, 0, 0, 89.99, -89.99],
|
| 150 |
distance=[1.8] * NUM_VIEWS,
|
|
@@ -187,11 +241,12 @@ def run_full(image: str, seed: int = 0, num_inference_steps: int = 50, guidance_
|
|
| 187 |
if seed != -1 and isinstance(seed, int):
|
| 188 |
pipe_kwargs["generator"] = torch.Generator(device=DEVICE).manual_seed(seed)
|
| 189 |
|
|
|
|
| 190 |
images = mv_adapter_pipe(
|
| 191 |
-
|
| 192 |
height=height,
|
| 193 |
width=width,
|
| 194 |
-
num_inference_steps=
|
| 195 |
guidance_scale=3.0,
|
| 196 |
num_images_per_prompt=NUM_VIEWS,
|
| 197 |
control_image=control_images,
|
|
@@ -204,6 +259,7 @@ def run_full(image: str, seed: int = 0, num_inference_steps: int = 50, guidance_
|
|
| 204 |
).images
|
| 205 |
|
| 206 |
torch.cuda.empty_cache()
|
|
|
|
| 207 |
os.makedirs(save_dir, exist_ok=True)
|
| 208 |
mv_image_path = os.path.join(save_dir, f"mv_adapter_{get_random_hex()}.png")
|
| 209 |
make_image_grid(images, rows=1).save(mv_image_path)
|
|
@@ -220,18 +276,19 @@ def run_full(image: str, seed: int = 0, num_inference_steps: int = 50, guidance_
|
|
| 220 |
save_dir=save_dir,
|
| 221 |
save_name=f"polygenixai_texture_mesh_{get_random_hex()}.glb",
|
| 222 |
uv_unwarp=True,
|
| 223 |
-
uv_size=
|
| 224 |
rgb_path=mv_image_path,
|
| 225 |
rgb_process_config=ModProcessConfig(view_upscale=True, inpaint_mode="view"),
|
| 226 |
camera_azimuth_deg=[x - 90 for x in [0, 90, 180, 270, 180, 180]],
|
| 227 |
)
|
| 228 |
|
|
|
|
| 229 |
return image_seg, mesh_path, textured_glb_path
|
| 230 |
except Exception as e:
|
| 231 |
logger.error(f"Error in run_full: {str(e)}")
|
| 232 |
raise
|
| 233 |
|
| 234 |
-
def gradio_generate(image: str, seed: int = 0, num_inference_steps: int =
|
| 235 |
try:
|
| 236 |
logger.info("Starting gradio_generate")
|
| 237 |
# Verify API key
|
|
@@ -255,7 +312,7 @@ def gradio_generate(image: str, seed: int = 0, num_inference_steps: int = 50, gu
|
|
| 255 |
logger.error(f"Image file not found: {temp_image_path}")
|
| 256 |
raise ValueError("Invalid or missing image file")
|
| 257 |
|
| 258 |
-
image_seg, mesh_path, textured_glb_path = run_full(temp_image_path, seed, num_inference_steps, guidance_scale, simplify, target_face_num, req=None)
|
| 259 |
session_hash = os.path.basename(os.path.dirname(textured_glb_path))
|
| 260 |
logger.info(f"Generated model at /files/{session_hash}/{os.path.basename(textured_glb_path)}")
|
| 261 |
return {"file_url": f"/files/{session_hash}/{os.path.basename(textured_glb_path)}"}
|
|
@@ -291,7 +348,6 @@ def get_random_seed(randomize_seed, seed):
|
|
| 291 |
logger.error(f"Error in get_random_seed: {str(e)}")
|
| 292 |
raise
|
| 293 |
|
| 294 |
-
|
| 295 |
def download_image(url: str, save_path: str) -> str:
|
| 296 |
"""Download an image from a URL and save it locally."""
|
| 297 |
try:
|
|
@@ -307,7 +363,7 @@ def download_image(url: str, save_path: str) -> str:
|
|
| 307 |
logger.error(f"Failed to download image from {url}: {str(e)}")
|
| 308 |
raise
|
| 309 |
|
| 310 |
-
@
|
| 311 |
@torch.no_grad()
|
| 312 |
def run_segmentation(image):
|
| 313 |
try:
|
|
@@ -332,15 +388,17 @@ def run_segmentation(image):
|
|
| 332 |
|
| 333 |
image = prepare_image(image_path, bg_color=np.array([1.0, 1.0, 1.0]), rmbg_net=rmbg_net)
|
| 334 |
logger.info("Segmentation complete")
|
|
|
|
| 335 |
return image
|
| 336 |
except Exception as e:
|
| 337 |
logger.error(f"Error in run_segmentation: {str(e)}")
|
| 338 |
raise
|
| 339 |
|
| 340 |
-
@
|
|
|
|
| 341 |
@torch.no_grad()
|
| 342 |
def image_to_3d(
|
| 343 |
-
image,
|
| 344 |
seed: int,
|
| 345 |
num_inference_steps: int,
|
| 346 |
guidance_scale: float,
|
|
@@ -350,6 +408,8 @@ def image_to_3d(
|
|
| 350 |
):
|
| 351 |
try:
|
| 352 |
logger.info("Running image_to_3d")
|
|
|
|
|
|
|
| 353 |
# Handle FileData dict from gradio_client
|
| 354 |
if isinstance(image, dict):
|
| 355 |
image_path = image.get("path") or image.get("url")
|
|
@@ -384,6 +444,7 @@ def image_to_3d(
|
|
| 384 |
mesh_path = os.path.join(save_dir, f"polygenixai_{get_random_hex()}.glb")
|
| 385 |
mesh.export(mesh_path)
|
| 386 |
logger.info(f"Saved mesh to {mesh_path}")
|
|
|
|
| 387 |
|
| 388 |
torch.cuda.empty_cache()
|
| 389 |
return mesh_path
|
|
@@ -391,12 +452,15 @@ def image_to_3d(
|
|
| 391 |
logger.error(f"Error in image_to_3d: {str(e)}")
|
| 392 |
raise
|
| 393 |
|
| 394 |
-
@
|
|
|
|
| 395 |
@torch.no_grad()
|
| 396 |
-
def run_texture(image
|
| 397 |
try:
|
| 398 |
-
logger.info("Running texture generation")
|
| 399 |
-
|
|
|
|
|
|
|
| 400 |
cameras = get_orthogonal_camera(
|
| 401 |
elevation_deg=[0, 0, 0, 0, 89.99, -89.99],
|
| 402 |
distance=[1.8] * NUM_VIEWS,
|
|
@@ -431,7 +495,16 @@ def run_texture(image: Image, mesh_path: str, seed: int, req: gr.Request):
|
|
| 431 |
.to(DEVICE)
|
| 432 |
)
|
| 433 |
|
| 434 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 435 |
image = remove_bg_fn(image)
|
| 436 |
image = preprocess_image(image, height, width)
|
| 437 |
|
|
@@ -439,11 +512,12 @@ def run_texture(image: Image, mesh_path: str, seed: int, req: gr.Request):
|
|
| 439 |
if seed != -1 and isinstance(seed, int):
|
| 440 |
pipe_kwargs["generator"] = torch.Generator(device=DEVICE).manual_seed(seed)
|
| 441 |
|
|
|
|
| 442 |
images = mv_adapter_pipe(
|
| 443 |
-
|
| 444 |
height=height,
|
| 445 |
width=width,
|
| 446 |
-
num_inference_steps=
|
| 447 |
guidance_scale=3.0,
|
| 448 |
num_images_per_prompt=NUM_VIEWS,
|
| 449 |
control_image=control_images,
|
|
@@ -456,6 +530,7 @@ def run_texture(image: Image, mesh_path: str, seed: int, req: gr.Request):
|
|
| 456 |
).images
|
| 457 |
|
| 458 |
torch.cuda.empty_cache()
|
|
|
|
| 459 |
save_dir = os.path.join(TMP_DIR, str(req.session_hash))
|
| 460 |
os.makedirs(save_dir, exist_ok=True)
|
| 461 |
mv_image_path = os.path.join(save_dir, f"mv_adapter_{get_random_hex()}.png")
|
|
@@ -473,7 +548,7 @@ def run_texture(image: Image, mesh_path: str, seed: int, req: gr.Request):
|
|
| 473 |
save_dir=save_dir,
|
| 474 |
save_name=f"polygenixai_texture_mesh_{get_random_hex()}.glb",
|
| 475 |
uv_unwarp=True,
|
| 476 |
-
uv_size=
|
| 477 |
rgb_path=mv_image_path,
|
| 478 |
rgb_process_config=ModProcessConfig(view_upscale=True, inpaint_mode="view"),
|
| 479 |
camera_azimuth_deg=[x - 90 for x in [0, 90, 180, 270, 180, 180]],
|
|
@@ -485,11 +560,14 @@ def run_texture(image: Image, mesh_path: str, seed: int, req: gr.Request):
|
|
| 485 |
logger.error(f"Error in run_texture: {str(e)}")
|
| 486 |
raise
|
| 487 |
|
| 488 |
-
@
|
|
|
|
| 489 |
@torch.no_grad()
|
| 490 |
-
def run_full_api(image, seed: int = 0, num_inference_steps: int =
|
| 491 |
try:
|
| 492 |
logger.info("Running run_full_api")
|
|
|
|
|
|
|
| 493 |
# Handle FileData dict or URL
|
| 494 |
if isinstance(image, dict):
|
| 495 |
image_path = image.get("path") or image.get("url")
|
|
@@ -508,10 +586,10 @@ def run_full_api(image, seed: int = 0, num_inference_steps: int = 50, guidance_s
|
|
| 508 |
logger.error(f"Invalid image path: {image_path}")
|
| 509 |
raise ValueError(f"Invalid image path: {image_path}")
|
| 510 |
|
| 511 |
-
image_seg, mesh_path, textured_glb_path = run_full(image_path, seed, num_inference_steps, guidance_scale, simplify, target_face_num, req)
|
| 512 |
session_hash = os.path.basename(os.path.dirname(textured_glb_path))
|
| 513 |
logger.info(f"Generated textured model at /files/{session_hash}/{os.path.basename(textured_glb_path)}")
|
| 514 |
-
return
|
| 515 |
except Exception as e:
|
| 516 |
logger.error(f"Error in run_full_api: {str(e)}")
|
| 517 |
raise
|
|
@@ -524,10 +602,15 @@ try:
|
|
| 524 |
inputs=[
|
| 525 |
gr.Image(type="filepath", label="Image"),
|
| 526 |
gr.Number(label="Seed", value=0, precision=0),
|
| 527 |
-
gr.Number(label="Inference Steps", value=
|
| 528 |
gr.Number(label="Guidance Scale", value=7.5),
|
| 529 |
gr.Checkbox(label="Simplify Mesh", value=True),
|
| 530 |
-
gr.Number(label="Target Face Number", value=DEFAULT_FACE_NUMBER, precision=0)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 531 |
],
|
| 532 |
outputs="json",
|
| 533 |
api_name="/api/generate"
|
|
@@ -653,7 +736,7 @@ try:
|
|
| 653 |
minimum=8,
|
| 654 |
maximum=50,
|
| 655 |
step=1,
|
| 656 |
-
value=
|
| 657 |
info="Higher steps enhance detail but increase processing time",
|
| 658 |
elem_classes="gr-slider"
|
| 659 |
)
|
|
@@ -689,7 +772,7 @@ try:
|
|
| 689 |
for image in os.listdir(f"{TRIPOSG_CODE_DIR}/assets/example_data")
|
| 690 |
],
|
| 691 |
fn=run_full,
|
| 692 |
-
inputs=[image_prompts],
|
| 693 |
outputs=[seg_image, model_output, textured_model_output],
|
| 694 |
cache_examples=True,
|
| 695 |
)
|
|
@@ -716,7 +799,7 @@ try:
|
|
| 716 |
).then(lambda: gr.Button(interactive=True), outputs=[gen_texture_button])
|
| 717 |
gen_texture_button.click(
|
| 718 |
run_texture,
|
| 719 |
-
inputs=[image_prompts, model_output, seed],
|
| 720 |
outputs=[textured_model_output]
|
| 721 |
)
|
| 722 |
demo.load(start_session)
|
|
|
|
| 8 |
import random
|
| 9 |
from transformers import AutoModelForImageSegmentation
|
| 10 |
from torchvision import transforms
|
| 11 |
+
from huggingface_hub import hf_hub_download, snapshot_download, HfApi
|
| 12 |
import subprocess
|
| 13 |
import shutil
|
| 14 |
import base64
|
| 15 |
import logging
|
| 16 |
+
import requests
|
| 17 |
+
from functools import wraps
|
| 18 |
+
import time
|
| 19 |
|
| 20 |
# Set up logging
|
| 21 |
logging.basicConfig(level=logging.INFO, format='%(asctime)s - %(levelname)s - %(message)s')
|
|
|
|
| 28 |
logger.error(f"Failed to install spandrel: {str(e)}")
|
| 29 |
raise
|
| 30 |
|
| 31 |
+
# Check if running in ZeroGPU environment
|
| 32 |
+
IS_ZEROGPU = os.getenv("HF_ZERO_SPACE", "0") == "1"
|
| 33 |
+
|
| 34 |
DEVICE = "cuda" if torch.cuda.is_available() else "cpu"
|
| 35 |
DTYPE = torch.float16
|
| 36 |
|
| 37 |
+
logger.info(f"Using device: {DEVICE}, ZeroGPU: {IS_ZEROGPU}")
|
| 38 |
|
| 39 |
+
DEFAULT_FACE_NUMBER = 50000 # Reduced for L4 and ZeroGPU
|
| 40 |
MAX_SEED = np.iinfo(np.int32).max
|
| 41 |
TRIPOSG_REPO_URL = "https://github.com/VAST-AI-Research/TripoSG.git"
|
| 42 |
MV_ADAPTER_REPO_URL = "https://github.com/huanngzh/MV-Adapter.git"
|
|
|
|
| 99 |
).to(DEVICE)
|
| 100 |
transform_image = transforms.Compose(
|
| 101 |
[
|
| 102 |
+
transforms.Resize((512, 512)), # Reduced for L4 and ZeroGPU
|
| 103 |
transforms.ToTensor(),
|
| 104 |
transforms.Normalize([0.485, 0.456, 0.406], [0.229, 0.224, 0.225]),
|
| 105 |
]
|
|
|
|
| 123 |
random_hex = random_bytes.hex()
|
| 124 |
return random_hex
|
| 125 |
|
| 126 |
+
# Retry decorator for GPU tasks
|
| 127 |
+
def retry_on_gpu_abort(max_attempts=3, delay=5):
|
| 128 |
+
def decorator(func):
|
| 129 |
+
@wraps(func)
|
| 130 |
+
def wrapper(*args, **kwargs):
|
| 131 |
+
attempts = 0
|
| 132 |
+
while attempts < max_attempts:
|
| 133 |
+
try:
|
| 134 |
+
return func(*args, **kwargs)
|
| 135 |
+
except gr.Error as e:
|
| 136 |
+
if "GPU task aborted" in str(e):
|
| 137 |
+
attempts += 1
|
| 138 |
+
logger.warning(f"GPU task aborted, retrying {attempts}/{max_attempts}")
|
| 139 |
+
time.sleep(delay)
|
| 140 |
+
else:
|
| 141 |
+
raise
|
| 142 |
+
raise gr.Error("Max retries reached for GPU task")
|
| 143 |
+
return wrapper
|
| 144 |
+
return decorator
|
| 145 |
+
|
| 146 |
+
# Quota check for ZeroGPU
|
| 147 |
+
def check_quota():
|
| 148 |
+
if not IS_ZEROGPU:
|
| 149 |
+
return True
|
| 150 |
+
hf_api = HfApi()
|
| 151 |
+
try:
|
| 152 |
+
quota = hf_api.get_space_runtime(token=os.getenv("HF_TOKEN"))
|
| 153 |
+
logger.info(f"Remaining ZeroGPU quota: {quota}")
|
| 154 |
+
return quota.get("gpu_quota_remaining", 0) > 60
|
| 155 |
+
except Exception as e:
|
| 156 |
+
logger.error(f"Failed to check quota: {str(e)}")
|
| 157 |
+
return False
|
| 158 |
+
|
| 159 |
+
# Conditional GPU decorator
|
| 160 |
+
def conditional_gpu_decorator(duration=None):
|
| 161 |
+
def decorator(func):
|
| 162 |
+
if IS_ZEROGPU:
|
| 163 |
+
return spaces.GPU(duration=duration)(func) if duration else spaces.GPU()(func)
|
| 164 |
+
return func
|
| 165 |
+
return decorator
|
| 166 |
+
|
| 167 |
+
@conditional_gpu_decorator(duration=10)
|
| 168 |
+
@retry_on_gpu_abort(max_attempts=3, delay=5)
|
| 169 |
+
def run_full(image: str, seed: int = 0, num_inference_steps: int = 30, guidance_scale: float = 7.5, simplify: bool = True, target_face_num: int = DEFAULT_FACE_NUMBER, req=None, style_filter: str = "None"):
|
| 170 |
try:
|
| 171 |
+
logger.info(f"Starting run_full with image: {image}, seed: {seed}, style: {style_filter}")
|
| 172 |
+
if not check_quota():
|
| 173 |
+
raise gr.Error("Insufficient GPU quota remaining")
|
| 174 |
image_seg = prepare_image(image, bg_color=np.array([1.0, 1.0, 1.0]), rmbg_net=rmbg_net)
|
| 175 |
+
logger.info("Image segmentation completed")
|
| 176 |
+
logger.info(f"VRAM usage after segmentation: {torch.cuda.memory_allocated(DEVICE)/1e9:.2f} GB")
|
| 177 |
|
| 178 |
outputs = triposg_pipe(
|
| 179 |
image=image_seg,
|
|
|
|
| 194 |
mesh_path = os.path.join(save_dir, f"polygenixai_{get_random_hex()}.glb")
|
| 195 |
mesh.export(mesh_path)
|
| 196 |
logger.info(f"Saved mesh to {mesh_path}")
|
| 197 |
+
logger.info(f"VRAM usage after mesh generation: {torch.cuda.memory_allocated(DEVICE)/1e9:.2f} GB")
|
| 198 |
|
| 199 |
torch.cuda.empty_cache()
|
| 200 |
|
| 201 |
+
height, width = 512, 512 # Reduced for L4 and ZeroGPU
|
| 202 |
cameras = get_orthogonal_camera(
|
| 203 |
elevation_deg=[0, 0, 0, 0, 89.99, -89.99],
|
| 204 |
distance=[1.8] * NUM_VIEWS,
|
|
|
|
| 241 |
if seed != -1 and isinstance(seed, int):
|
| 242 |
pipe_kwargs["generator"] = torch.Generator(device=DEVICE).manual_seed(seed)
|
| 243 |
|
| 244 |
+
prompt = f"high quality, {style_filter.lower()}" if style_filter != "None" else "high quality"
|
| 245 |
images = mv_adapter_pipe(
|
| 246 |
+
prompt,
|
| 247 |
height=height,
|
| 248 |
width=width,
|
| 249 |
+
num_inference_steps=10, # Reduced for L4 and ZeroGPU
|
| 250 |
guidance_scale=3.0,
|
| 251 |
num_images_per_prompt=NUM_VIEWS,
|
| 252 |
control_image=control_images,
|
|
|
|
| 259 |
).images
|
| 260 |
|
| 261 |
torch.cuda.empty_cache()
|
| 262 |
+
logger.info(f"VRAM usage after texture generation: {torch.cuda.memory_allocated(DEVICE)/1e9:.2f} GB")
|
| 263 |
os.makedirs(save_dir, exist_ok=True)
|
| 264 |
mv_image_path = os.path.join(save_dir, f"mv_adapter_{get_random_hex()}.png")
|
| 265 |
make_image_grid(images, rows=1).save(mv_image_path)
|
|
|
|
| 276 |
save_dir=save_dir,
|
| 277 |
save_name=f"polygenixai_texture_mesh_{get_random_hex()}.glb",
|
| 278 |
uv_unwarp=True,
|
| 279 |
+
uv_size=2048, # Reduced for L4 and ZeroGPU
|
| 280 |
rgb_path=mv_image_path,
|
| 281 |
rgb_process_config=ModProcessConfig(view_upscale=True, inpaint_mode="view"),
|
| 282 |
camera_azimuth_deg=[x - 90 for x in [0, 90, 180, 270, 180, 180]],
|
| 283 |
)
|
| 284 |
|
| 285 |
+
logger.info(f"run_full completed successfully, textured model saved to {textured_glb_path}")
|
| 286 |
return image_seg, mesh_path, textured_glb_path
|
| 287 |
except Exception as e:
|
| 288 |
logger.error(f"Error in run_full: {str(e)}")
|
| 289 |
raise
|
| 290 |
|
| 291 |
+
def gradio_generate(image: str, seed: int = 0, num_inference_steps: int = 30, guidance_scale: float = 7.5, simplify: bool = True, target_face_num: int = DEFAULT_FACE_NUMBER, style_filter: str = "None"):
|
| 292 |
try:
|
| 293 |
logger.info("Starting gradio_generate")
|
| 294 |
# Verify API key
|
|
|
|
| 312 |
logger.error(f"Image file not found: {temp_image_path}")
|
| 313 |
raise ValueError("Invalid or missing image file")
|
| 314 |
|
| 315 |
+
image_seg, mesh_path, textured_glb_path = run_full(temp_image_path, seed, num_inference_steps, guidance_scale, simplify, target_face_num, req=None, style_filter=style_filter)
|
| 316 |
session_hash = os.path.basename(os.path.dirname(textured_glb_path))
|
| 317 |
logger.info(f"Generated model at /files/{session_hash}/{os.path.basename(textured_glb_path)}")
|
| 318 |
return {"file_url": f"/files/{session_hash}/{os.path.basename(textured_glb_path)}"}
|
|
|
|
| 348 |
logger.error(f"Error in get_random_seed: {str(e)}")
|
| 349 |
raise
|
| 350 |
|
|
|
|
| 351 |
def download_image(url: str, save_path: str) -> str:
|
| 352 |
"""Download an image from a URL and save it locally."""
|
| 353 |
try:
|
|
|
|
| 363 |
logger.error(f"Failed to download image from {url}: {str(e)}")
|
| 364 |
raise
|
| 365 |
|
| 366 |
+
@conditional_gpu_decorator()
|
| 367 |
@torch.no_grad()
|
| 368 |
def run_segmentation(image):
|
| 369 |
try:
|
|
|
|
| 388 |
|
| 389 |
image = prepare_image(image_path, bg_color=np.array([1.0, 1.0, 1.0]), rmbg_net=rmbg_net)
|
| 390 |
logger.info("Segmentation complete")
|
| 391 |
+
torch.cuda.empty_cache()
|
| 392 |
return image
|
| 393 |
except Exception as e:
|
| 394 |
logger.error(f"Error in run_segmentation: {str(e)}")
|
| 395 |
raise
|
| 396 |
|
| 397 |
+
@conditional_gpu_decorator(duration=5)
|
| 398 |
+
@retry_on_gpu_abort(max_attempts=3, delay=5)
|
| 399 |
@torch.no_grad()
|
| 400 |
def image_to_3d(
|
| 401 |
+
image,
|
| 402 |
seed: int,
|
| 403 |
num_inference_steps: int,
|
| 404 |
guidance_scale: float,
|
|
|
|
| 408 |
):
|
| 409 |
try:
|
| 410 |
logger.info("Running image_to_3d")
|
| 411 |
+
if not check_quota():
|
| 412 |
+
raise gr.Error("Insufficient GPU quota remaining")
|
| 413 |
# Handle FileData dict from gradio_client
|
| 414 |
if isinstance(image, dict):
|
| 415 |
image_path = image.get("path") or image.get("url")
|
|
|
|
| 444 |
mesh_path = os.path.join(save_dir, f"polygenixai_{get_random_hex()}.glb")
|
| 445 |
mesh.export(mesh_path)
|
| 446 |
logger.info(f"Saved mesh to {mesh_path}")
|
| 447 |
+
logger.info(f"VRAM usage after mesh generation: {torch.cuda.memory_allocated(DEVICE)/1e9:.2f} GB")
|
| 448 |
|
| 449 |
torch.cuda.empty_cache()
|
| 450 |
return mesh_path
|
|
|
|
| 452 |
logger.error(f"Error in image_to_3d: {str(e)}")
|
| 453 |
raise
|
| 454 |
|
| 455 |
+
@conditional_gpu_decorator(duration=5)
|
| 456 |
+
@retry_on_gpu_abort(max_attempts=3, delay=5)
|
| 457 |
@torch.no_grad()
|
| 458 |
+
def run_texture(image, mesh_path: str, seed: int, req: gr.Request, style_filter: str = "None"):
|
| 459 |
try:
|
| 460 |
+
logger.info(f"Running texture generation with style: {style_filter}")
|
| 461 |
+
if not check_quota():
|
| 462 |
+
raise gr.Error("Insufficient GPU quota remaining")
|
| 463 |
+
height, width = 512, 512 # Reduced for L4 and ZeroGPU
|
| 464 |
cameras = get_orthogonal_camera(
|
| 465 |
elevation_deg=[0, 0, 0, 0, 89.99, -89.99],
|
| 466 |
distance=[1.8] * NUM_VIEWS,
|
|
|
|
| 495 |
.to(DEVICE)
|
| 496 |
)
|
| 497 |
|
| 498 |
+
# Handle both file path and PIL Image
|
| 499 |
+
if isinstance(image, str):
|
| 500 |
+
if image.startswith("http"):
|
| 501 |
+
temp_image_path = os.path.join(TMP_DIR, f"input_{get_random_hex()}.png")
|
| 502 |
+
image = download_image(image, temp_image_path)
|
| 503 |
+
image = Image.open(image)
|
| 504 |
+
elif not isinstance(image, Image.Image):
|
| 505 |
+
logger.error(f"Invalid image type: {type(image)}")
|
| 506 |
+
raise ValueError(f"Expected PIL Image or str (path/URL), got {type(image)}")
|
| 507 |
+
|
| 508 |
image = remove_bg_fn(image)
|
| 509 |
image = preprocess_image(image, height, width)
|
| 510 |
|
|
|
|
| 512 |
if seed != -1 and isinstance(seed, int):
|
| 513 |
pipe_kwargs["generator"] = torch.Generator(device=DEVICE).manual_seed(seed)
|
| 514 |
|
| 515 |
+
prompt = f"high quality, {style_filter.lower()}" if style_filter != "None" else "high quality"
|
| 516 |
images = mv_adapter_pipe(
|
| 517 |
+
prompt,
|
| 518 |
height=height,
|
| 519 |
width=width,
|
| 520 |
+
num_inference_steps=10, # Reduced for L4 and ZeroGPU
|
| 521 |
guidance_scale=3.0,
|
| 522 |
num_images_per_prompt=NUM_VIEWS,
|
| 523 |
control_image=control_images,
|
|
|
|
| 530 |
).images
|
| 531 |
|
| 532 |
torch.cuda.empty_cache()
|
| 533 |
+
logger.info(f"VRAM usage after texture generation: {torch.cuda.memory_allocated(DEVICE)/1e9:.2f} GB")
|
| 534 |
save_dir = os.path.join(TMP_DIR, str(req.session_hash))
|
| 535 |
os.makedirs(save_dir, exist_ok=True)
|
| 536 |
mv_image_path = os.path.join(save_dir, f"mv_adapter_{get_random_hex()}.png")
|
|
|
|
| 548 |
save_dir=save_dir,
|
| 549 |
save_name=f"polygenixai_texture_mesh_{get_random_hex()}.glb",
|
| 550 |
uv_unwarp=True,
|
| 551 |
+
uv_size=2048, # Reduced for L4 and ZeroGPU
|
| 552 |
rgb_path=mv_image_path,
|
| 553 |
rgb_process_config=ModProcessConfig(view_upscale=True, inpaint_mode="view"),
|
| 554 |
camera_azimuth_deg=[x - 90 for x in [0, 90, 180, 270, 180, 180]],
|
|
|
|
| 560 |
logger.error(f"Error in run_texture: {str(e)}")
|
| 561 |
raise
|
| 562 |
|
| 563 |
+
@conditional_gpu_decorator(duration=10)
|
| 564 |
+
@retry_on_gpu_abort(max_attempts=3, delay=5)
|
| 565 |
@torch.no_grad()
|
| 566 |
+
def run_full_api(image, seed: int = 0, num_inference_steps: int = 30, guidance_scale: float = 7.5, simplify: bool = True, target_face_num: int = DEFAULT_FACE_NUMBER, req: gr.Request = None, style_filter: str = "None"):
|
| 567 |
try:
|
| 568 |
logger.info("Running run_full_api")
|
| 569 |
+
if not check_quota():
|
| 570 |
+
raise gr.Error("Insufficient GPU quota remaining")
|
| 571 |
# Handle FileData dict or URL
|
| 572 |
if isinstance(image, dict):
|
| 573 |
image_path = image.get("path") or image.get("url")
|
|
|
|
| 586 |
logger.error(f"Invalid image path: {image_path}")
|
| 587 |
raise ValueError(f"Invalid image path: {image_path}")
|
| 588 |
|
| 589 |
+
image_seg, mesh_path, textured_glb_path = run_full(image_path, seed, num_inference_steps, guidance_scale, simplify, target_face_num, req, style_filter)
|
| 590 |
session_hash = os.path.basename(os.path.dirname(textured_glb_path))
|
| 591 |
logger.info(f"Generated textured model at /files/{session_hash}/{os.path.basename(textured_glb_path)}")
|
| 592 |
+
return image_seg, mesh_path, textured_glb_path
|
| 593 |
except Exception as e:
|
| 594 |
logger.error(f"Error in run_full_api: {str(e)}")
|
| 595 |
raise
|
|
|
|
| 602 |
inputs=[
|
| 603 |
gr.Image(type="filepath", label="Image"),
|
| 604 |
gr.Number(label="Seed", value=0, precision=0),
|
| 605 |
+
gr.Number(label="Inference Steps", value=30, precision=0),
|
| 606 |
gr.Number(label="Guidance Scale", value=7.5),
|
| 607 |
gr.Checkbox(label="Simplify Mesh", value=True),
|
| 608 |
+
gr.Number(label="Target Face Number", value=DEFAULT_FACE_NUMBER, precision=0),
|
| 609 |
+
gr.Dropdown(
|
| 610 |
+
choices=["None", "Realistic", "Fantasy", "Cartoon", "Sci-Fi", "Vintage", "Cosmic", "Neon"],
|
| 611 |
+
label="Style Filter",
|
| 612 |
+
value="None",
|
| 613 |
+
),
|
| 614 |
],
|
| 615 |
outputs="json",
|
| 616 |
api_name="/api/generate"
|
|
|
|
| 736 |
minimum=8,
|
| 737 |
maximum=50,
|
| 738 |
step=1,
|
| 739 |
+
value=30, # Reduced for L4 and ZeroGPU
|
| 740 |
info="Higher steps enhance detail but increase processing time",
|
| 741 |
elem_classes="gr-slider"
|
| 742 |
)
|
|
|
|
| 772 |
for image in os.listdir(f"{TRIPOSG_CODE_DIR}/assets/example_data")
|
| 773 |
],
|
| 774 |
fn=run_full,
|
| 775 |
+
inputs=[image_prompts, seed, num_inference_steps, guidance_scale, reduce_face, target_face_num, style_filter],
|
| 776 |
outputs=[seg_image, model_output, textured_model_output],
|
| 777 |
cache_examples=True,
|
| 778 |
)
|
|
|
|
| 799 |
).then(lambda: gr.Button(interactive=True), outputs=[gen_texture_button])
|
| 800 |
gen_texture_button.click(
|
| 801 |
run_texture,
|
| 802 |
+
inputs=[image_prompts, model_output, seed, style_filter],
|
| 803 |
outputs=[textured_model_output]
|
| 804 |
)
|
| 805 |
demo.load(start_session)
|