arghyaiitb's picture
fixed the model code
a2b32c9
import torch
import torch.nn as nn
import torch.nn.functional as F
class Bottleneck(nn.Module):
"""Bottleneck residual block for ResNet-50/101/152"""
expansion = 4
def __init__(self, in_channels, out_channels, stride=1, downsample=None, dropout=0.0):
super(Bottleneck, self).__init__()
self.conv1 = nn.Conv2d(in_channels, out_channels, kernel_size=1, bias=False)
self.bn1 = nn.BatchNorm2d(out_channels)
self.conv2 = nn.Conv2d(out_channels, out_channels, kernel_size=3, stride=stride, padding=1, bias=False)
self.bn2 = nn.BatchNorm2d(out_channels)
self.conv3 = nn.Conv2d(out_channels, out_channels * self.expansion, kernel_size=1, bias=False)
self.bn3 = nn.BatchNorm2d(out_channels * self.expansion)
self.downsample = downsample
self.dropout = nn.Dropout2d(dropout) if dropout > 0 else None
def forward(self, x):
identity = x
out = self.conv1(x)
out = self.bn1(out)
out = F.relu(out)
out = self.conv2(out)
out = self.bn2(out)
out = F.relu(out)
if self.dropout is not None:
out = self.dropout(out)
out = self.conv3(out)
out = self.bn3(out)
if self.downsample is not None:
identity = self.downsample(x)
out += identity
out = F.relu(out)
return out
class ResNet50(nn.Module):
"""ResNet-50 model for ImageNet-1K dataset"""
def __init__(self, num_classes=1000, dropout=0.0):
super(ResNet50, self).__init__()
self.in_channels = 64
# Initial convolution layer for ImageNet (224x224 input)
self.conv1 = nn.Conv2d(3, 64, kernel_size=7, stride=2, padding=3, bias=False)
self.bn1 = nn.BatchNorm2d(64)
self.maxpool = nn.MaxPool2d(kernel_size=3, stride=2, padding=1)
# ResNet-50 architecture: [3, 4, 6, 3] blocks per layer group
self.layer1 = self._make_layer(64, 3, stride=1, dropout=dropout)
self.layer2 = self._make_layer(128, 4, stride=2, dropout=dropout)
self.layer3 = self._make_layer(256, 6, stride=2, dropout=dropout)
self.layer4 = self._make_layer(512, 3, stride=2, dropout=dropout)
# Final layers for ImageNet
self.avgpool = nn.AdaptiveAvgPool2d((1, 1))
self.dropout = nn.Dropout(0.5) # Standard dropout for ImageNet
self.fc = nn.Linear(512 * Bottleneck.expansion, num_classes)
# Initialize weights
self._initialize_weights()
def _make_layer(self, out_channels, blocks, stride, dropout=0.0):
"""Create a residual layer with specified number of blocks"""
downsample = None
if stride != 1 or self.in_channels != out_channels * Bottleneck.expansion:
downsample = nn.Sequential(
nn.Conv2d(self.in_channels, out_channels * Bottleneck.expansion,
kernel_size=1, stride=stride, bias=False),
nn.BatchNorm2d(out_channels * Bottleneck.expansion),
)
layers = []
layers.append(Bottleneck(self.in_channels, out_channels, stride, downsample, dropout))
self.in_channels = out_channels * Bottleneck.expansion
for _ in range(1, blocks):
layers.append(Bottleneck(self.in_channels, out_channels, dropout=dropout))
return nn.Sequential(*layers)
def _initialize_weights(self):
"""Initialize weights using He initialization"""
for m in self.modules():
if isinstance(m, nn.Conv2d):
nn.init.kaiming_normal_(m.weight, mode='fan_out', nonlinearity='relu')
elif isinstance(m, nn.BatchNorm2d):
nn.init.constant_(m.weight, 1)
nn.init.constant_(m.bias, 0)
def forward(self, x):
# Initial layers
x = self.conv1(x)
x = self.bn1(x)
x = F.relu(x)
x = self.maxpool(x)
# Residual layers
x = self.layer1(x)
x = self.layer2(x)
x = self.layer3(x)
x = self.layer4(x)
# Final layers
x = self.avgpool(x)
x = torch.flatten(x, 1)
x = self.dropout(x)
x = self.fc(x)
return x
if __name__ == "__main__":
# Test the model
model = ResNet50(num_classes=1000)
print(f"Model parameters: {sum(p.numel() for p in model.parameters()):,}")
print(f"Model trainable parameters: {sum(p.numel() for p in model.parameters() if p.requires_grad):,}")
# Test forward pass
x = torch.randn(1, 3, 224, 224) # ImageNet size (224x224)
y = model(x)
print(f"Input shape: {x.shape}")
print(f"Output shape: {y.shape}")
print(f"Expected output classes: {y.shape[1]}")