Spaces:
Sleeping
Sleeping
Create app.py
Browse files
app.py
ADDED
|
@@ -0,0 +1,75 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
import streamlit as st
|
| 2 |
+
import transformers
|
| 3 |
+
from transformers import pipeline
|
| 4 |
+
import PIL
|
| 5 |
+
from PIL import Image
|
| 6 |
+
import requests
|
| 7 |
+
from transformers import AutoProcessor, AutoModelForZeroShotImageClassification
|
| 8 |
+
|
| 9 |
+
pipe = pipeline("summarization", model="google/pegasus-xsum")
|
| 10 |
+
agepipe = pipeline("image-classification", model="dima806/facial_age_image_detection")
|
| 11 |
+
imgpipe = pipeline("zero-shot-image-classification", model="openai/clip-vit-base-patch32")
|
| 12 |
+
emopipe = pipeline("text-classification", model="michellejieli/emotion_text_classifier")
|
| 13 |
+
|
| 14 |
+
st.title("NLP APP")
|
| 15 |
+
option = st.sidebar.selectbox(
|
| 16 |
+
"Choose a task",
|
| 17 |
+
("Summarization", "Age Detection", "Emotion Detection", "Image Classification")
|
| 18 |
+
)
|
| 19 |
+
if option == "Summarization":
|
| 20 |
+
st.title("Text Summarization")
|
| 21 |
+
text = st.text_area("Enter text to summarize")
|
| 22 |
+
if st.button("Summarize"):
|
| 23 |
+
if text:
|
| 24 |
+
st.write("Summary:", pipe(text)[0]["summary_text"])
|
| 25 |
+
else:
|
| 26 |
+
st.write("Please enter text to summarize.")
|
| 27 |
+
elif option == "Age Detection":
|
| 28 |
+
st.title("Welcome to age detection")
|
| 29 |
+
|
| 30 |
+
uploaded_files = st.file_uploader("Choose a image file",type="jpg")
|
| 31 |
+
|
| 32 |
+
if uploaded_files is not None:
|
| 33 |
+
Image=Image.open(uploaded_files)
|
| 34 |
+
|
| 35 |
+
st.write("Detected age is ",agepipe(Image)[0]["label"])
|
| 36 |
+
elif option == "Image Classification":
|
| 37 |
+
st.title("Welcome to object detection")
|
| 38 |
+
|
| 39 |
+
uploaded_file = st.file_uploader("Choose an image file", type=["jpg", "jpeg", "png"])
|
| 40 |
+
text = st.text_area("Enter possible class names (comma-separated)")
|
| 41 |
+
if st.button("Submit"):
|
| 42 |
+
if uploaded_file is not None and text:
|
| 43 |
+
candidate_labels = [t.strip() for t in text.split(',')]
|
| 44 |
+
image = Image.open(uploaded_file)
|
| 45 |
+
st.image(image, caption="Uploaded Image", use_column_width=True)
|
| 46 |
+
classification_result = imgpipe(image, candidate_labels=candidate_labels)
|
| 47 |
+
for result in classification_result:
|
| 48 |
+
st.write(f"Label: {result['label']}, Score: {result['score']}")
|
| 49 |
+
else:
|
| 50 |
+
st.write("Please upload an image file and enter class names.")
|
| 51 |
+
elif option == "Emotion Detection":
|
| 52 |
+
st.title("Detect your emotion")
|
| 53 |
+
text=st.text_area("Enter your text")
|
| 54 |
+
if st.button("Submit"):
|
| 55 |
+
if text:
|
| 56 |
+
emotion=emopipe(text)[0]["label"]
|
| 57 |
+
if emotion == "sadness":
|
| 58 |
+
st.write("Emotion : ",emotion,"π’")
|
| 59 |
+
elif emotion == "joy":
|
| 60 |
+
st.write("Emotion : ",emotion,"π")
|
| 61 |
+
elif emotion == "fear":
|
| 62 |
+
st.write("Emotion : ",emotion,"π¨")
|
| 63 |
+
elif emotion == "anger":
|
| 64 |
+
st.write("Emotion : ",emotion,"π‘")
|
| 65 |
+
elif emotion == "neutral":
|
| 66 |
+
st.write("Emotion : ",emotion,"π")
|
| 67 |
+
elif emotion == "disgust":
|
| 68 |
+
st.write("Emotion : ",emotion,"π€’")
|
| 69 |
+
elif emotion == "surprise":
|
| 70 |
+
st.write("Emotion : ",emotion,"π²")
|
| 71 |
+
else:
|
| 72 |
+
st.write("Please enter text.")
|
| 73 |
+
|
| 74 |
+
else:
|
| 75 |
+
st.title("None")
|