Spaces:
Running
Running
Ashish Ranjan Karn
commited on
Commit
·
a304836
1
Parent(s):
3672bdc
init
Browse files- .gitignore +65 -0
- README.md +51 -3
- app.py +81 -0
- requirements.txt +6 -0
.gitignore
ADDED
|
@@ -0,0 +1,65 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
# Python
|
| 2 |
+
__pycache__/
|
| 3 |
+
*.py[cod]
|
| 4 |
+
*$py.class
|
| 5 |
+
*.so
|
| 6 |
+
.Python
|
| 7 |
+
build/
|
| 8 |
+
develop-eggs/
|
| 9 |
+
dist/
|
| 10 |
+
downloads/
|
| 11 |
+
eggs/
|
| 12 |
+
.eggs/
|
| 13 |
+
lib/
|
| 14 |
+
lib64/
|
| 15 |
+
parts/
|
| 16 |
+
sdist/
|
| 17 |
+
var/
|
| 18 |
+
wheels/
|
| 19 |
+
*.egg-info/
|
| 20 |
+
.installed.cfg
|
| 21 |
+
*.egg
|
| 22 |
+
MANIFEST
|
| 23 |
+
|
| 24 |
+
# PyTorch
|
| 25 |
+
*.pth
|
| 26 |
+
*.pt
|
| 27 |
+
|
| 28 |
+
# Jupyter Notebook
|
| 29 |
+
.ipynb_checkpoints
|
| 30 |
+
|
| 31 |
+
# IPython
|
| 32 |
+
profile_default/
|
| 33 |
+
ipython_config.py
|
| 34 |
+
|
| 35 |
+
# Environment variables
|
| 36 |
+
.env
|
| 37 |
+
.venv
|
| 38 |
+
env/
|
| 39 |
+
venv/
|
| 40 |
+
ENV/
|
| 41 |
+
env.bak/
|
| 42 |
+
venv.bak/
|
| 43 |
+
|
| 44 |
+
# IDE
|
| 45 |
+
.vscode/
|
| 46 |
+
.idea/
|
| 47 |
+
*.swp
|
| 48 |
+
*.swo
|
| 49 |
+
*~
|
| 50 |
+
|
| 51 |
+
# macOS
|
| 52 |
+
.DS_Store
|
| 53 |
+
|
| 54 |
+
# Windows
|
| 55 |
+
Thumbs.db
|
| 56 |
+
ehthumbs.db
|
| 57 |
+
Desktop.ini
|
| 58 |
+
|
| 59 |
+
# Model cache (optional - comment out if you want to cache models)
|
| 60 |
+
# .cache/
|
| 61 |
+
# models/
|
| 62 |
+
|
| 63 |
+
# Gradio temporary files
|
| 64 |
+
gradio_cached_examples/
|
| 65 |
+
flagged/
|
README.md
CHANGED
|
@@ -1,12 +1,60 @@
|
|
| 1 |
---
|
| 2 |
-
title:
|
| 3 |
-
emoji:
|
| 4 |
colorFrom: purple
|
| 5 |
colorTo: indigo
|
| 6 |
sdk: gradio
|
| 7 |
sdk_version: 5.34.2
|
| 8 |
app_file: app.py
|
| 9 |
pinned: false
|
|
|
|
| 10 |
---
|
| 11 |
|
| 12 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
---
|
| 2 |
+
title: AI Image Detector
|
| 3 |
+
emoji: 🤖
|
| 4 |
colorFrom: purple
|
| 5 |
colorTo: indigo
|
| 6 |
sdk: gradio
|
| 7 |
sdk_version: 5.34.2
|
| 8 |
app_file: app.py
|
| 9 |
pinned: false
|
| 10 |
+
license: mit
|
| 11 |
---
|
| 12 |
|
| 13 |
+
# 🤖 AI Image Detector
|
| 14 |
+
|
| 15 |
+
Detect whether an image is AI-generated or real using state-of-the-art machine learning models.
|
| 16 |
+
|
| 17 |
+
## Overview
|
| 18 |
+
|
| 19 |
+
This Gradio app uses the [Organika/sdxl-detector](https://huggingface.co/Organika/sdxl-detector) model to classify images as either AI-generated or real. The model has been specifically trained to detect images generated by various AI systems including:
|
| 20 |
+
|
| 21 |
+
- DALL-E
|
| 22 |
+
- Midjourney
|
| 23 |
+
- Stable Diffusion (SDXL)
|
| 24 |
+
- And other diffusion models
|
| 25 |
+
|
| 26 |
+
## How to Use
|
| 27 |
+
|
| 28 |
+
1. **Upload an Image**: Click on the upload area or drag and drop an image file (JPG, PNG, etc.)
|
| 29 |
+
2. **Get Results**: The model will analyze your image and return probability scores
|
| 30 |
+
3. **Interpret Results**: Higher probability for "AI-generated" suggests the image was created by AI
|
| 31 |
+
|
| 32 |
+
## Model Information
|
| 33 |
+
|
| 34 |
+
- **Model**: [Organika/sdxl-detector](https://huggingface.co/Organika/sdxl-detector)
|
| 35 |
+
- **Task**: Image Classification (Binary: AI-generated vs Real)
|
| 36 |
+
- **Framework**: Transformers + PyTorch
|
| 37 |
+
- **Interface**: Gradio
|
| 38 |
+
|
| 39 |
+
## Limitations
|
| 40 |
+
|
| 41 |
+
⚠️ **Important Notes:**
|
| 42 |
+
- The model may not be 100% accurate on all images
|
| 43 |
+
- Performance may vary depending on the specific AI model used to generate the image
|
| 44 |
+
- Very high-quality AI images or heavily post-processed real images might be misclassified
|
| 45 |
+
- The model is primarily trained on SDXL-style generated images
|
| 46 |
+
|
| 47 |
+
## Technical Details
|
| 48 |
+
|
| 49 |
+
The app uses both the Transformers pipeline and direct model inference to provide robust classification results. The model outputs probabilities for each class, giving you confidence scores for the prediction.
|
| 50 |
+
|
| 51 |
+
## Development
|
| 52 |
+
|
| 53 |
+
This space is built with:
|
| 54 |
+
- **Gradio**: For the web interface
|
| 55 |
+
- **Transformers**: For model loading and inference
|
| 56 |
+
- **PyTorch**: As the backend framework
|
| 57 |
+
|
| 58 |
+
---
|
| 59 |
+
|
| 60 |
+
*This is an educational tool for demonstrating AI image detection capabilities. Always use critical thinking when evaluating image authenticity.*
|
app.py
ADDED
|
@@ -0,0 +1,81 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
import gradio as gr
|
| 2 |
+
from transformers import pipeline, AutoImageProcessor, AutoModelForImageClassification
|
| 3 |
+
|
| 4 |
+
# Load the model and processor
|
| 5 |
+
print("Loading model...")
|
| 6 |
+
processor = AutoImageProcessor.from_pretrained("Organika/sdxl-detector")
|
| 7 |
+
model = AutoModelForImageClassification.from_pretrained("Organika/sdxl-detector")
|
| 8 |
+
pipe = pipeline("image-classification", model="Organika/sdxl-detector")
|
| 9 |
+
print("Model loaded successfully!")
|
| 10 |
+
|
| 11 |
+
def detect_ai(image):
|
| 12 |
+
"""
|
| 13 |
+
Detect if an image is AI-generated or real.
|
| 14 |
+
|
| 15 |
+
Args:
|
| 16 |
+
image: PIL Image object
|
| 17 |
+
|
| 18 |
+
Returns:
|
| 19 |
+
dict: Probabilities for each class (AI-generated vs Real)
|
| 20 |
+
"""
|
| 21 |
+
if image is None:
|
| 22 |
+
return {}
|
| 23 |
+
|
| 24 |
+
try:
|
| 25 |
+
# Pipeline result
|
| 26 |
+
pipe_out = pipe(image)
|
| 27 |
+
|
| 28 |
+
# Direct model inference for more detailed results
|
| 29 |
+
inputs = processor(images=image, return_tensors="pt")
|
| 30 |
+
outputs = model(**inputs)
|
| 31 |
+
logits = outputs.logits
|
| 32 |
+
probs = logits.softmax(dim=-1)[0].tolist()
|
| 33 |
+
id2label = model.config.id2label
|
| 34 |
+
|
| 35 |
+
# Create result dictionary
|
| 36 |
+
result = {
|
| 37 |
+
id2label[0]: probs[0],
|
| 38 |
+
id2label[1]: probs[1],
|
| 39 |
+
}
|
| 40 |
+
|
| 41 |
+
return result
|
| 42 |
+
|
| 43 |
+
except Exception as e:
|
| 44 |
+
print(f"Error processing image: {e}")
|
| 45 |
+
return {"Error": "Failed to process image"}
|
| 46 |
+
|
| 47 |
+
# Create the Gradio interface
|
| 48 |
+
demo = gr.Interface(
|
| 49 |
+
fn=detect_ai,
|
| 50 |
+
inputs=gr.Image(type="pil", label="Upload an Image"),
|
| 51 |
+
outputs=gr.Label(num_top_classes=2, label="AI vs Real Probability"),
|
| 52 |
+
title="🤖 AI‑Generated Image Detector",
|
| 53 |
+
description="""
|
| 54 |
+
Upload an image to detect whether it's AI-generated or real using the Organika/sdxl-detector model.
|
| 55 |
+
|
| 56 |
+
This model can help identify images generated by AI systems like DALL-E, Midjourney, Stable Diffusion, and others.
|
| 57 |
+
|
| 58 |
+
**How to use:**
|
| 59 |
+
1. Upload an image (JPG, PNG, etc.)
|
| 60 |
+
2. The model will analyze it and return probabilities
|
| 61 |
+
3. Higher probability for "AI-generated" suggests the image was created by AI
|
| 62 |
+
""",
|
| 63 |
+
article="""
|
| 64 |
+
### About the Model
|
| 65 |
+
This detector uses the [Organika/sdxl-detector](https://huggingface.co/Organika/sdxl-detector) model
|
| 66 |
+
to classify images as either AI-generated or real. The model has been trained to detect various AI-generated images
|
| 67 |
+
with a focus on SDXL and similar diffusion models.
|
| 68 |
+
|
| 69 |
+
### Limitations
|
| 70 |
+
- The model may not be 100% accurate on all images
|
| 71 |
+
- Performance may vary depending on the AI model used to generate the image
|
| 72 |
+
- Very high-quality AI images or heavily post-processed real images might be misclassified
|
| 73 |
+
""",
|
| 74 |
+
examples=[
|
| 75 |
+
# You can add example images here if you have them
|
| 76 |
+
],
|
| 77 |
+
cache_examples=False,
|
| 78 |
+
)
|
| 79 |
+
|
| 80 |
+
if __name__ == "__main__":
|
| 81 |
+
demo.launch()
|
requirements.txt
ADDED
|
@@ -0,0 +1,6 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
transformers
|
| 2 |
+
torch
|
| 3 |
+
torchvision
|
| 4 |
+
gradio
|
| 5 |
+
Pillow
|
| 6 |
+
numpy
|