Spaces:
Runtime error
Runtime error
| import gradio as gr | |
| import json | |
| import logging | |
| import torch | |
| from PIL import Image | |
| from diffusers import ( | |
| DiffusionPipeline, | |
| EulerDiscreteScheduler, | |
| DPMSolverMultistepScheduler, | |
| DPMSolverSinglestepScheduler, | |
| KDPM2DiscreteScheduler, | |
| KDPM2AncestralDiscreteScheduler, | |
| EulerAncestralDiscreteScheduler, | |
| HeunDiscreteScheduler, | |
| LMSDiscreteScheduler, | |
| DEISMultistepScheduler, | |
| UniPCMultistepScheduler | |
| ) | |
| import spaces | |
| # Load LoRAs from JSON file | |
| with open('loras.json', 'r') as f: | |
| loras = json.load(f) | |
| # Initialize the base model | |
| base_model = "stabilityai/stable-diffusion-xl-base-1.0" | |
| pipe = DiffusionPipeline.from_pretrained(base_model, torch_dtype=torch.float16) | |
| pipe.to("cuda") | |
| def update_selection(evt: gr.SelectData): | |
| selected_lora = loras[evt.index] | |
| new_placeholder = f"Type a prompt for {selected_lora['title']}" | |
| lora_repo = selected_lora["repo"] | |
| updated_text = f"### Selected: [{lora_repo}](https://huggingface.co/{lora_repo}) ✨" | |
| return ( | |
| gr.update(placeholder=new_placeholder), | |
| updated_text, | |
| evt.index | |
| ) | |
| def run_lora(prompt, negative_prompt, cfg_scale, steps, selected_index, scheduler, seed, width, height, lora_scale): | |
| if selected_index is None: | |
| raise gr.Error("You must select a LoRA before proceeding.") | |
| selected_lora = loras[selected_index] | |
| lora_path = selected_lora["repo"] | |
| trigger_word = selected_lora["trigger_word"] | |
| # Load LoRA weights | |
| pipe.load_lora_weights(lora_path) | |
| # Set scheduler | |
| scheduler_config = pipe.scheduler.config | |
| if scheduler == "DPM++ 2M": | |
| pipe.scheduler = DPMSolverMultistepScheduler.from_config(scheduler_config) | |
| elif scheduler == "DPM++ 2M Karras": | |
| pipe.scheduler = DPMSolverMultistepScheduler.from_config(scheduler_config, use_karras_sigmas=True) | |
| elif scheduler == "DPM++ 2M SDE": | |
| pipe.scheduler = DPMSolverMultistepScheduler.from_config(scheduler_config, algorithm_type="sde-dpmsolver++") | |
| elif scheduler == "DPM++ 2M SDE Karras": | |
| pipe.scheduler = DPMSolverMultistepScheduler.from_config(scheduler_config, use_karras_sigmas=True, algorithm_type="sde-dpmsolver++") | |
| elif scheduler == "DPM++ SDE": | |
| pipe.scheduler = DPMSolverSinglestepScheduler.from_config(scheduler_config) | |
| elif scheduler == "DPM++ SDE Karras": | |
| pipe.scheduler = DPMSolverSinglestepScheduler.from_config(scheduler_config, use_karras_sigmas=True) | |
| elif scheduler == "DPM2": | |
| pipe.scheduler = KDPM2DiscreteScheduler.from_config(scheduler_config) | |
| elif scheduler == "DPM2 Karras": | |
| pipe.scheduler = KDPM2DiscreteScheduler.from_config(scheduler_config, use_karras_sigmas=True) | |
| elif scheduler == "DPM2 a": | |
| pipe.scheduler = KDPM2AncestralDiscreteScheduler.from_config(scheduler_config) | |
| elif scheduler == "DPM2 a Karras": | |
| pipe.scheduler = KDPM2AncestralDiscreteScheduler.from_config(scheduler_config, use_karras_sigmas=True) | |
| elif scheduler == "Euler": | |
| pipe.scheduler = EulerDiscreteScheduler.from_config(scheduler_config) | |
| elif scheduler == "Euler a": | |
| pipe.scheduler = EulerAncestralDiscreteScheduler.from_config(scheduler_config) | |
| elif scheduler == "Heun": | |
| pipe.scheduler = HeunDiscreteScheduler.from_config(scheduler_config) | |
| elif scheduler == "LMS": | |
| pipe.scheduler = LMSDiscreteScheduler.from_config(scheduler_config) | |
| elif scheduler == "LMS Karras": | |
| pipe.scheduler = LMSDiscreteScheduler.from_config(scheduler_config, use_karras_sigmas=True) | |
| elif scheduler == "DEIS": | |
| pipe.scheduler = DEISMultistepScheduler.from_config(scheduler_config) | |
| elif scheduler == "UniPC": | |
| pipe.scheduler = UniPCMultistepScheduler.from_config(scheduler_config) | |
| # Set random seed for reproducibility | |
| generator = torch.Generator(device="cuda").manual_seed(seed) | |
| # Generate image | |
| image = pipe( | |
| prompt=f"{prompt} {trigger_word}", | |
| negative_prompt=negative_prompt, | |
| num_inference_steps=steps, | |
| guidance_scale=cfg_scale, | |
| width=width, | |
| height=height, | |
| generator=generator, | |
| cross_attention_kwargs={"scale": lora_scale}, | |
| ).images[0] | |
| # Unload LoRA weights | |
| pipe.unload_lora_weights() | |
| return image | |
| with gr.Blocks(theme=gr.themes.Soft()) as app: | |
| gr.Markdown("# artificialguybr LoRA Portfolio") | |
| gr.Markdown( | |
| "### This is my portfolio. Follow me on Twitter [@artificialguybr](https://twitter.com/artificialguybr).\n" | |
| "**Note**: Generation quality may vary. For best results, adjust the parameters.\n" | |
| "Special thanks to Hugging Face for their Diffusers library and Spaces platform." | |
| ) | |
| selected_index = gr.State(None) | |
| with gr.Row(): | |
| with gr.Column(scale=2): | |
| result = gr.Image(label="Generated Image", height=768) | |
| generate_button = gr.Button("Generate", variant="primary") | |
| with gr.Column(scale=1): | |
| gallery = gr.Gallery( | |
| [(item["image"], item["title"]) for item in loras], | |
| label="LoRA Gallery", | |
| allow_preview=False, | |
| columns=2 | |
| ) | |
| with gr.Row(): | |
| with gr.Column(): | |
| prompt_title = gr.Markdown("### Click on a LoRA in the gallery to select it") | |
| selected_info = gr.Markdown("") | |
| prompt = gr.Textbox(label="Prompt", lines=3, placeholder="Type a prompt after selecting a LoRA") | |
| negative_prompt = gr.Textbox(label="Negative Prompt", lines=2, value="low quality, bad anatomy, bad hands, text, error, missing fingers, extra digit, fewer digits, cropped, worst quality, low quality, normal quality, jpeg artifacts, signature, watermark, username, blurry") | |
| with gr.Column(): | |
| with gr.Row(): | |
| cfg_scale = gr.Slider(label="CFG Scale", minimum=1, maximum=20, step=0.5, value=7.5) | |
| steps = gr.Slider(label="Steps", minimum=1, maximum=100, step=1, value=30) | |
| with gr.Row(): | |
| width = gr.Slider(label="Width", minimum=256, maximum=1536, step=64, value=1024) | |
| height = gr.Slider(label="Height", minimum=256, maximum=1536, step=64, value=1024) | |
| with gr.Row(): | |
| seed = gr.Slider(label="Seed", minimum=0, maximum=2**32-1, step=1, value=0, randomize=True) | |
| lora_scale = gr.Slider(label="LoRA Scale", minimum=0, maximum=1, step=0.01, value=1) | |
| scheduler = gr.Dropdown( | |
| label="Scheduler", | |
| choices=[ | |
| "DPM++ 2M", "DPM++ 2M Karras", "DPM++ 2M SDE", "DPM++ 2M SDE Karras", | |
| "DPM++ SDE", "DPM++ SDE Karras", "DPM2", "DPM2 Karras", "DPM2 a", "DPM2 a Karras", | |
| "Euler", "Euler a", "Heun", "LMS", "LMS Karras", "DEIS", "UniPC" | |
| ], | |
| value="DPM++ 2M SDE Karras" | |
| ) | |
| gallery.select(update_selection, outputs=[prompt, selected_info, selected_index]) | |
| generate_button.click( | |
| fn=run_lora, | |
| inputs=[prompt, negative_prompt, cfg_scale, steps, selected_index, scheduler, seed, width, height, lora_scale], | |
| outputs=[result] | |
| ) | |
| app.queue() | |
| app.launch() | |