first commit
Browse files- app.py +28 -0
- requirements.txt +4 -0
app.py
ADDED
|
@@ -0,0 +1,28 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
from fastapi import FastAPI
|
| 2 |
+
from transformers import AutoTokenizer, AutoModelForCausalLM
|
| 3 |
+
import torch
|
| 4 |
+
|
| 5 |
+
app = FastAPI()
|
| 6 |
+
|
| 7 |
+
# Load Qwen-7B once saat startup
|
| 8 |
+
model_name = "Qwen/Qwen-7B"
|
| 9 |
+
tokenizer = AutoTokenizer.from_pretrained(model_name)
|
| 10 |
+
model = AutoModelForCausalLM.from_pretrained(model_name, device_map="cpu")
|
| 11 |
+
|
| 12 |
+
@app.get("/")
|
| 13 |
+
def home():
|
| 14 |
+
return {"status": "ok", "message": "Qwen-7B API is running!"}
|
| 15 |
+
|
| 16 |
+
@app.post("/chat")
|
| 17 |
+
async def chat(prompt: str):
|
| 18 |
+
inputs = tokenizer(prompt, return_tensors="pt")
|
| 19 |
+
with torch.no_grad():
|
| 20 |
+
outputs = model.generate(
|
| 21 |
+
**inputs,
|
| 22 |
+
max_new_tokens=200,
|
| 23 |
+
do_sample=True,
|
| 24 |
+
temperature=0.7,
|
| 25 |
+
top_p=0.9
|
| 26 |
+
)
|
| 27 |
+
text = tokenizer.decode(outputs[0], skip_special_tokens=True)
|
| 28 |
+
return {"response": text}
|
requirements.txt
ADDED
|
@@ -0,0 +1,4 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
transformers>=4.40.0
|
| 2 |
+
torch
|
| 3 |
+
fastapi
|
| 4 |
+
uvicorn
|