Spaces:
Build error
Build error
| import gradio as gr | |
| from transformers import AutoTokenizer, AutoModelForSequenceClassification | |
| # Load the model and tokenizer | |
| tokenizer = AutoTokenizer.from_pretrained("padmajabfrl/Gender-Classification") | |
| model = AutoModelForSequenceClassification.from_pretrained("padmajabfrl/Gender-Classification") | |
| # Function to predict gender | |
| def predict_gender(name): | |
| inputs = tokenizer(name, return_tensors="pt") | |
| outputs = model(**inputs) | |
| predictions = outputs.logits.argmax(dim=-1) | |
| predicted_label = model.config.id2label[predictions.item()] | |
| return predicted_label | |
| # Create a Gradio interface | |
| with gr.Blocks() as demo: | |
| gr.Markdown("<h1 style='text-align: center;'>Kaleida Gender Prediction Transformer</h1>") | |
| gr.Markdown("<h3 style='text-align: center;'>Tops Infosolution 🤝 Kaleida</h3>") | |
| with gr.Row(): | |
| with gr.Column(): | |
| name_input = gr.Textbox(label="Enter a Name", placeholder="Type a name here...", lines=1) | |
| classify_button = gr.Button("Predict Gender") | |
| with gr.Column(): | |
| output_label = gr.Label(label="Predicted Gender") | |
| classify_button.click(predict_gender, inputs=name_input, outputs=output_label) | |
| # Launch the app | |
| demo.launch() | |