Spaces:
Running
Running
| from enum import Enum | |
| class SimilarityMetric(Enum): | |
| COSINE = "cosine" | |
| EUCLIDEAN = "euclidean" | |
| def mean_pooling(token_embeddings, mask): | |
| token_embeddings = token_embeddings.masked_fill(~mask[..., None].bool(), 0.0) | |
| sentence_embeddings = token_embeddings.sum(dim=1) / mask.sum(dim=1)[..., None] | |
| return sentence_embeddings | |
| def argsort_scores(scores: list[float], descending: bool = False): | |
| return [ | |
| {"item": item, "original_index": idx} | |
| for idx, item in sorted( | |
| list(enumerate(scores)), key=lambda x: x[1], reverse=descending | |
| ) | |
| ] | |