Spaces:
Running
on
Zero
Running
on
Zero
Update app.py
Browse files
app.py
CHANGED
|
@@ -37,6 +37,7 @@ print('Loading aux Giant Music Transformer modules...')
|
|
| 37 |
import matplotlib.pyplot as plt
|
| 38 |
|
| 39 |
import gradio as gr
|
|
|
|
| 40 |
|
| 41 |
print('=' * 70)
|
| 42 |
print('PyTorch version:', torch.__version__)
|
|
@@ -47,50 +48,6 @@ print('=' * 70)
|
|
| 47 |
|
| 48 |
#==================================================================================
|
| 49 |
|
| 50 |
-
print('=' * 70)
|
| 51 |
-
print('Instantiating model...')
|
| 52 |
-
|
| 53 |
-
device_type = 'cuda'
|
| 54 |
-
dtype = 'bfloat16'
|
| 55 |
-
|
| 56 |
-
ptdtype = {'bfloat16': torch.bfloat16, 'float16': torch.float16}[dtype]
|
| 57 |
-
ctx = torch.amp.autocast(device_type=device_type, dtype=ptdtype)
|
| 58 |
-
|
| 59 |
-
SEQ_LEN = 8192
|
| 60 |
-
PAD_IDX = 19463
|
| 61 |
-
|
| 62 |
-
model = TransformerWrapper(
|
| 63 |
-
num_tokens = PAD_IDX+1,
|
| 64 |
-
max_seq_len = SEQ_LEN,
|
| 65 |
-
attn_layers = Decoder(dim = 2048,
|
| 66 |
-
depth = 8,
|
| 67 |
-
heads = 32,
|
| 68 |
-
rotary_pos_emb = True,
|
| 69 |
-
attn_flash = True
|
| 70 |
-
)
|
| 71 |
-
)
|
| 72 |
-
|
| 73 |
-
model = AutoregressiveWrapper(model, ignore_index=PAD_IDX, pad_value=PAD_IDX)
|
| 74 |
-
|
| 75 |
-
print('=' * 70)
|
| 76 |
-
print('Loading model checkpoint...')
|
| 77 |
-
|
| 78 |
-
model_path = 'Giant-Music-Transformer/Models/Medium/Giant_Music_Transformer_Medium_Trained_Model_10446_steps_0.7202_loss_0.8233_acc.pth'
|
| 79 |
-
|
| 80 |
-
model.load_state_dict(torch.load(model_path))
|
| 81 |
-
|
| 82 |
-
print('=' * 70)
|
| 83 |
-
|
| 84 |
-
model.cuda()
|
| 85 |
-
model.eval()
|
| 86 |
-
|
| 87 |
-
print('Done!')
|
| 88 |
-
print('=' * 70)
|
| 89 |
-
print('Model will use', dtype, 'precision...')
|
| 90 |
-
print('=' * 70)
|
| 91 |
-
|
| 92 |
-
#==================================================================================
|
| 93 |
-
|
| 94 |
SOUDFONT_PATH = 'SGM-v2.01-YamahaGrand-Guit-Bass-v2.7'
|
| 95 |
|
| 96 |
NUM_OUT_BATCHES = 8
|
|
@@ -249,6 +206,7 @@ def save_midi(tokens, batch_number=None):
|
|
| 249 |
|
| 250 |
#==================================================================================
|
| 251 |
|
|
|
|
| 252 |
def generate_music(prime,
|
| 253 |
num_gen_tokens,
|
| 254 |
num_gen_batches,
|
|
@@ -258,6 +216,55 @@ def generate_music(prime,
|
|
| 258 |
model_sampling_top_p
|
| 259 |
):
|
| 260 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 261 |
if not prime:
|
| 262 |
inputs = [19461]
|
| 263 |
|
|
@@ -290,6 +297,9 @@ def generate_music(prime,
|
|
| 290 |
|
| 291 |
output = out.tolist()
|
| 292 |
|
|
|
|
|
|
|
|
|
|
| 293 |
return output
|
| 294 |
|
| 295 |
#==================================================================================
|
|
|
|
| 37 |
import matplotlib.pyplot as plt
|
| 38 |
|
| 39 |
import gradio as gr
|
| 40 |
+
import spaces
|
| 41 |
|
| 42 |
print('=' * 70)
|
| 43 |
print('PyTorch version:', torch.__version__)
|
|
|
|
| 48 |
|
| 49 |
#==================================================================================
|
| 50 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 51 |
SOUDFONT_PATH = 'SGM-v2.01-YamahaGrand-Guit-Bass-v2.7'
|
| 52 |
|
| 53 |
NUM_OUT_BATCHES = 8
|
|
|
|
| 206 |
|
| 207 |
#==================================================================================
|
| 208 |
|
| 209 |
+
@spaces.GPU
|
| 210 |
def generate_music(prime,
|
| 211 |
num_gen_tokens,
|
| 212 |
num_gen_batches,
|
|
|
|
| 216 |
model_sampling_top_p
|
| 217 |
):
|
| 218 |
|
| 219 |
+
|
| 220 |
+
#==============================================================================
|
| 221 |
+
|
| 222 |
+
print('=' * 70)
|
| 223 |
+
print('Instantiating model...')
|
| 224 |
+
|
| 225 |
+
device_type = 'cuda'
|
| 226 |
+
dtype = 'bfloat16'
|
| 227 |
+
|
| 228 |
+
ptdtype = {'bfloat16': torch.bfloat16, 'float16': torch.float16}[dtype]
|
| 229 |
+
ctx = torch.amp.autocast(device_type=device_type, dtype=ptdtype)
|
| 230 |
+
|
| 231 |
+
SEQ_LEN = 8192
|
| 232 |
+
PAD_IDX = 19463
|
| 233 |
+
|
| 234 |
+
model = TransformerWrapper(
|
| 235 |
+
num_tokens = PAD_IDX+1,
|
| 236 |
+
max_seq_len = SEQ_LEN,
|
| 237 |
+
attn_layers = Decoder(dim = 2048,
|
| 238 |
+
depth = 8,
|
| 239 |
+
heads = 32,
|
| 240 |
+
rotary_pos_emb = True,
|
| 241 |
+
attn_flash = True
|
| 242 |
+
)
|
| 243 |
+
)
|
| 244 |
+
|
| 245 |
+
model = AutoregressiveWrapper(model, ignore_index=PAD_IDX, pad_value=PAD_IDX)
|
| 246 |
+
|
| 247 |
+
print('=' * 70)
|
| 248 |
+
print('Loading model checkpoint...')
|
| 249 |
+
|
| 250 |
+
model_path = 'Giant-Music-Transformer/Models/Medium/Giant_Music_Transformer_Medium_Trained_Model_10446_steps_0.7202_loss_0.8233_acc.pth'
|
| 251 |
+
|
| 252 |
+
model.load_state_dict(torch.load(model_path))
|
| 253 |
+
|
| 254 |
+
print('=' * 70)
|
| 255 |
+
|
| 256 |
+
model.cuda()
|
| 257 |
+
model.eval()
|
| 258 |
+
|
| 259 |
+
print('Done!')
|
| 260 |
+
print('=' * 70)
|
| 261 |
+
print('Model will use', dtype, 'precision...')
|
| 262 |
+
print('=' * 70)
|
| 263 |
+
|
| 264 |
+
#==============================================================================
|
| 265 |
+
|
| 266 |
+
print('Generating...')
|
| 267 |
+
|
| 268 |
if not prime:
|
| 269 |
inputs = [19461]
|
| 270 |
|
|
|
|
| 297 |
|
| 298 |
output = out.tolist()
|
| 299 |
|
| 300 |
+
print('Done!')
|
| 301 |
+
print('=' * 70)
|
| 302 |
+
|
| 303 |
return output
|
| 304 |
|
| 305 |
#==================================================================================
|