Spaces:
Running
on
Zero
Running
on
Zero
| #================================================================================== | |
| # https://huggingface.co/spaces/asigalov61/MIDI-Genre-Classifier | |
| #================================================================================== | |
| print('=' * 70) | |
| print('MIDI Genre Classifier Gradio App') | |
| print('=' * 70) | |
| print('Loading core MIDI Genre Classifier modules...') | |
| import os | |
| import copy | |
| import time as reqtime | |
| import datetime | |
| from pytz import timezone | |
| print('=' * 70) | |
| print('Loading main MIDI Genre Classifier modules...') | |
| os.environ['USE_FLASH_ATTENTION'] = '1' | |
| import torch | |
| torch.set_float32_matmul_precision('medium') | |
| torch.backends.cuda.matmul.allow_tf32 = True # allow tf32 on matmul | |
| torch.backends.cudnn.allow_tf32 = True # allow tf32 on cudnn | |
| torch.backends.cuda.enable_mem_efficient_sdp(True) | |
| torch.backends.cuda.enable_math_sdp(True) | |
| torch.backends.cuda.enable_flash_sdp(True) | |
| torch.backends.cuda.enable_cudnn_sdp(True) | |
| import numpy as np | |
| from huggingface_hub import hf_hub_download | |
| import TMIDIX | |
| from midi_to_colab_audio import midi_to_colab_audio | |
| from x_transformer_1_23_2 import * | |
| import random | |
| import tqdm | |
| print('=' * 70) | |
| print('Loading aux MIDI Genre Classifier modules...') | |
| import matplotlib.pyplot as plt | |
| import gradio as gr | |
| import spaces | |
| print('=' * 70) | |
| print('PyTorch version:', torch.__version__) | |
| print('=' * 70) | |
| print('Done!') | |
| print('Enjoy! :)') | |
| print('=' * 70) | |
| #================================================================================== | |
| MODEL_CHECKPOINT = 'Giant_Music_Transformer_Medium_Trained_Model_42174_steps_0.5211_loss_0.8542_acc.pth' | |
| SOUDFONT_PATH = 'SGM-v2.01-YamahaGrand-Guit-Bass-v2.7.sf2' | |
| #================================================================================== | |
| print('=' * 70) | |
| print('Loading MIDI GAS processed scores dataset...') | |
| midi_gas_ps_pickle = hf_hub_download(repo_id='asigalov61/MIDI-GAS', | |
| filename='MIDI_GAS_Processed_Scores_CC_BY_NC_SA.pickle', | |
| repo_type='dataset' | |
| ) | |
| midi_gas_ps = TMIDIX.Tegridy_Any_Pickle_File_Reader(midi_gas_ps_pickle) | |
| print('=' * 70) | |
| print('Done!') | |
| print('=' * 70) | |
| #================================================================================== | |
| print('=' * 70) | |
| print('Loading MIDI GAS processed scores embeddings dataset...') | |
| midi_gas_pse_pickle = hf_hub_download(repo_id='asigalov61/MIDI-GAS', | |
| filename='MIDI_GAS_Processed_Scores_Embeddings_CC_BY_NC_SA.pickle', | |
| repo_type='dataset' | |
| ) | |
| midi_gas_pse = np.array([a[3] for a in TMIDIX.Tegridy_Any_Pickle_File_Reader(midi_gas_pse_pickle)]) | |
| print('=' * 70) | |
| print('Done!') | |
| print('=' * 70) | |
| #================================================================================== | |
| print('=' * 70) | |
| print('Instantiating model...') | |
| device_type = 'cuda' | |
| dtype = 'bfloat16' | |
| ptdtype = {'bfloat16': torch.bfloat16, 'float16': torch.float16}[dtype] | |
| ctx = torch.amp.autocast(device_type=device_type, dtype=ptdtype) | |
| SEQ_LEN = 8192 | |
| PAD_IDX = 19463 | |
| model = TransformerWrapper( | |
| num_tokens = PAD_IDX+1, | |
| max_seq_len = SEQ_LEN, | |
| attn_layers = Decoder(dim = 2048, | |
| depth = 8, | |
| heads = 32, | |
| rotary_pos_emb = True, | |
| attn_flash = True | |
| ) | |
| ) | |
| model = AutoregressiveWrapper(model, ignore_index=PAD_IDX, pad_value=PAD_IDX, return_cache=True) | |
| print('=' * 70) | |
| print('Loading model checkpoint...') | |
| model_checkpoint = hf_hub_download(repo_id='asigalov61/Giant-Music-Transformer', filename=MODEL_CHECKPOINT) | |
| model.load_state_dict(torch.load(model_checkpoint, map_location='cpu', weights_only=True)) | |
| print('=' * 70) | |
| print('Done!') | |
| print('=' * 70) | |
| print('Model will use', dtype, 'precision...') | |
| print('=' * 70) | |
| #================================================================================== | |
| def load_midi(input_midi): | |
| raw_score = TMIDIX.midi2single_track_ms_score(input_midi) | |
| escore = TMIDIX.advanced_score_processor(raw_score, return_enhanced_score_notes=True)[0] | |
| escore_notes = TMIDIX.augment_enhanced_score_notes(escore) | |
| instruments_list = list(set([y[6] for y in escore_notes])) | |
| tok_score = [] | |
| if 128 in instruments_list: | |
| drums_present = 19331 | |
| else: | |
| drums_present = 19330 | |
| pat = escore_notes[0][6] | |
| tok_score.extend([19461, drums_present, 19332+pat]) | |
| tok_score.extend(TMIDIX.multi_instrumental_escore_notes_tokenized(escore_notes)[:8190]) | |
| return tok_score | |
| #================================================================================== | |
| def logsumexp_pooling(x, dim=1, keepdim=False): | |
| max_val, _ = torch.max(x, dim=dim, keepdim=True) | |
| lse = max_val + torch.log(torch.mean(torch.exp(x - max_val), dim=dim, keepdim=keepdim) + 1e-10) | |
| return lse | |
| def gem_pooling(x, p=3.0, eps=1e-6): | |
| pooled = torch.mean(x ** p, dim=1) | |
| return pooled.clamp(min=eps).pow(1 / p) | |
| def median_pooling(x, dim=1): | |
| return torch.median(x, dim=dim).values | |
| def rms_pooling(x, dim=1): | |
| return torch.sqrt(torch.mean(x ** 2, dim=dim) + 1e-6) | |
| def get_embeddings(inputs): | |
| with ctx: | |
| with torch.no_grad(): | |
| out = model(inputs) | |
| cache = out[2] | |
| hidden = cache.layer_hiddens[-1] | |
| mean_pool = torch.mean(hidden, dim=1) | |
| max_pool = torch.max(hidden, dim=1).values | |
| lse_pool = logsumexp_pooling(hidden, dim=1) | |
| gem_pool = gem_pooling(hidden, p=3.0) | |
| median_pool = median_pooling(hidden, dim=1) | |
| rms_pool = rms_pooling(hidden, dim=1) | |
| concat_pool = torch.cat((mean_pool, | |
| max_pool, | |
| lse_pool[0][:, :512], | |
| gem_pool[:, :512], | |
| median_pool[:, :512], | |
| rms_pool[:, :512]), dim=1) | |
| return concat_pool.cpu().detach().numpy()[0] | |
| #================================================================================== | |
| def cosine_similarity_numpy(src_array, trg_array): | |
| src_norm = np.linalg.norm(src_array) | |
| trg_norms = np.linalg.norm(trg_array, axis=1) | |
| dot_products = np.dot(trg_array, src_array) | |
| cosine_sims = dot_products / (src_norm * trg_norms + 1e-10) | |
| return cosine_sims.tolist() | |
| #================================================================================== | |
| def select_best_output(outputs, embeddings, src_embeddings, input_mixed_pooling, top_k=10): | |
| if input_mixed_pooling: | |
| emb_sims = cosine_similarity_numpy(src_embeddings, embeddings) | |
| else: | |
| emb_sims = cosine_similarity_numpy(src_embeddings[:2048], embeddings[:, :2048]) | |
| sorted_emb_sims = sorted(emb_sims, reverse=True) | |
| hits = [] | |
| hits_idxs = [] | |
| for s in sorted_emb_sims[:top_k]: | |
| idx = emb_sims.index(s) | |
| hits_idxs.append(idx) | |
| hits.extend([[str(s)] + outputs[idx][:3]]) | |
| return hits, hits_idxs | |
| #================================================================================== | |
| def Classify_MIDI_Genre(input_midi, input_mixed_pooling): | |
| #=============================================================================== | |
| print('=' * 70) | |
| print('Req start time: {:%Y-%m-%d %H:%M:%S}'.format(datetime.datetime.now(PDT))) | |
| start_time = reqtime.time() | |
| print('=' * 70) | |
| print('=' * 70) | |
| print('Requested settings:') | |
| print('=' * 70) | |
| fn = os.path.basename(input_midi) | |
| fn1 = fn.split('.')[0] | |
| print('Input MIDI file name:', fn) | |
| print('Use mixed embeddings pooling:', input_mixed_pooling) | |
| print('=' * 70) | |
| #=============================================================================== | |
| model.to(device_type) | |
| model.eval() | |
| #=============================================================================== | |
| print('Loading and prepping source MIDI...') | |
| src_score = load_midi(input_midi.name) | |
| inp = torch.LongTensor([src_score]).to(device_type) | |
| src_emb = get_embeddings(inp) | |
| print('Done!') | |
| #=============================================================================== | |
| print('Sample embeddings values', src_emb[:3]) | |
| #=============================================================================== | |
| print('=' * 70) | |
| print('Classifying...') | |
| #=============================================================================== | |
| result = select_best_output(midi_gas_ps, midi_gas_pse, src_emb, input_mixed_pooling) | |
| results_str = '' | |
| for i, r in enumerate(result[0]): | |
| print(' --- '.join([str(i+1).zfill(2)] + r)) | |
| results_str += ' --- '.join([str(i+1).zfill(2)] + r) + '\n' | |
| #=============================================================================== | |
| print('=' * 70) | |
| print('Done!') | |
| print('=' * 70) | |
| #=============================================================================== | |
| print('Rendering results...') | |
| print('=' * 70) | |
| song_name = ' --- '.join(midi_gas_ps[result[1][0]][:3]) | |
| print('Song entry', song_name) | |
| song = midi_gas_ps[result[1][0]][3] | |
| print('Sample INTs', song[:15]) | |
| print('=' * 70) | |
| song_f = [] | |
| if len(song) != 0: | |
| time = 0 | |
| dur = 0 | |
| vel = 90 | |
| pitch = 0 | |
| channel = 0 | |
| patches = [-1] * 16 | |
| patches[9] = 9 | |
| channels = [0] * 16 | |
| channels[9] = 1 | |
| for ss in song: | |
| if 0 <= ss < 256: | |
| time += ss * 16 | |
| if 256 <= ss < 2304: | |
| dur = ((ss-256) // 8) * 16 | |
| vel = (((ss-256) % 8)+1) * 15 | |
| if 2304 <= ss < 18945: | |
| patch = (ss-2304) // 129 | |
| if patch < 128: | |
| if patch not in patches: | |
| if 0 in channels: | |
| cha = channels.index(0) | |
| channels[cha] = 1 | |
| else: | |
| cha = 15 | |
| patches[cha] = patch | |
| channel = patches.index(patch) | |
| else: | |
| channel = patches.index(patch) | |
| if patch == 128: | |
| channel = 9 | |
| pitch = (ss-2304) % 129 | |
| song_f.append(['note', time, dur, channel, pitch, vel, patch ]) | |
| patches = [0 if x==-1 else x for x in patches] | |
| fn1 = "MIDI-Genre-Classifier-Composition" | |
| detailed_stats = TMIDIX.Tegridy_ms_SONG_to_MIDI_Converter(song_f, | |
| output_signature = 'MIDI Genre Classifier', | |
| output_file_name = fn1, | |
| track_name='Project Los Angeles', | |
| list_of_MIDI_patches=patches | |
| ) | |
| new_fn = fn1+'.mid' | |
| audio = midi_to_colab_audio(new_fn, | |
| soundfont_path=SOUDFONT_PATH, | |
| sample_rate=16000, | |
| volume_scale=10, | |
| output_for_gradio=True | |
| ) | |
| print('Done!') | |
| print('=' * 70) | |
| #=============================================================================== | |
| output_title = str(song_name) | |
| output_midi = str(new_fn) | |
| output_audio = (16000, audio) | |
| output_plot = TMIDIX.plot_ms_SONG(song_f, plot_title=output_midi, return_plt=True) | |
| output_cls_results = str(results_str) | |
| print('Output MIDI file name:', output_midi) | |
| print('Output MIDI melody title:', output_title) | |
| print('=' * 70) | |
| #=============================================================================== | |
| print('-' * 70) | |
| print('Req end time: {:%Y-%m-%d %H:%M:%S}'.format(datetime.datetime.now(PDT))) | |
| print('-' * 70) | |
| print('Req execution time:', (reqtime.time() - start_time), 'sec') | |
| return output_title, output_audio, output_plot, output_midi, output_cls_results | |
| #================================================================================== | |
| PDT = timezone('US/Pacific') | |
| print('=' * 70) | |
| print('App start time: {:%Y-%m-%d %H:%M:%S}'.format(datetime.datetime.now(PDT))) | |
| print('=' * 70) | |
| #================================================================================== | |
| with gr.Blocks() as demo: | |
| #================================================================================== | |
| gr.Markdown("<h1 style='text-align: center; margin-bottom: 1rem'>MIDI Genre Classifier</h1>") | |
| gr.Markdown("<h1 style='text-align: center; margin-bottom: 1rem'>Accurately classify any MIDI by top music genre</h1>") | |
| gr.HTML(""" | |
| <p> | |
| <a href="https://huggingface.co/spaces/asigalov61/MIDI-Genre-Classifier?duplicate=true"> | |
| <img src="https://huggingface.co/datasets/huggingface/badges/resolve/main/duplicate-this-space-md.svg" alt="Duplicate in Hugging Face"> | |
| </a> | |
| </p> | |
| for faster execution and endless classification! | |
| """) | |
| #================================================================================== | |
| gr.Markdown("## Upload any MIDI or select an example MIDI below") | |
| input_midi = gr.File(label="Input MIDI", | |
| file_types=[".midi", ".mid", ".kar"] | |
| ) | |
| input_mixed_pooling = gr.Checkbox(value=False, label="Use mixed embeddings pooling") | |
| generate_btn = gr.Button("Classify", variant="primary") | |
| gr.Markdown("## Classification results") | |
| output_title = gr.Textbox(label="MIDI title") | |
| output_audio = gr.Audio(label="MIDI audio", format="wav", elem_id="midi_audio") | |
| output_plot = gr.Plot(label="MIDI score plot") | |
| output_midi = gr.File(label="MIDI file", file_types=[".mid"]) | |
| output_cls_results = gr.Textbox(label="MIDI classification results") | |
| generate_btn.click(Classify_MIDI_Genre, | |
| [input_midi, | |
| input_mixed_pooling | |
| ], | |
| [output_title, | |
| output_audio, | |
| output_plot, | |
| output_midi, | |
| output_cls_results | |
| ] | |
| ) | |
| gr.Examples( | |
| [["Hotel California.mid", False], | |
| ["Come To My Window.mid", False] | |
| ], | |
| [input_midi | |
| ], | |
| [output_title, | |
| output_audio, | |
| output_plot, | |
| output_midi, | |
| output_cls_results | |
| ], | |
| Classify_MIDI_Genre | |
| ) | |
| #================================================================================== | |
| demo.launch() | |
| #================================================================================== |