Spaces:
Sleeping
Sleeping
Initial commit
Browse files- README.md +30 -7
- app.py +444 -0
- requirements.txt +12 -0
README.md
CHANGED
|
@@ -1,13 +1,36 @@
|
|
| 1 |
---
|
| 2 |
-
title:
|
| 3 |
-
emoji:
|
| 4 |
-
colorFrom:
|
| 5 |
-
colorTo:
|
| 6 |
sdk: gradio
|
| 7 |
-
sdk_version: 5.
|
| 8 |
app_file: app.py
|
| 9 |
pinned: false
|
| 10 |
-
license: gpl-3.0
|
| 11 |
---
|
|
|
|
| 12 |
|
| 13 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
---
|
| 2 |
+
title: YouTube Translator and Speaker
|
| 3 |
+
emoji: π
|
| 4 |
+
colorFrom: yellow
|
| 5 |
+
colorTo: blue
|
| 6 |
sdk: gradio
|
| 7 |
+
sdk_version: 5.28.0
|
| 8 |
app_file: app.py
|
| 9 |
pinned: false
|
|
|
|
| 10 |
---
|
| 11 |
+
# YouTube Translator and Speaker
|
| 12 |
|
| 13 |
+
This HuggingFace Space application allows you to get the translated transcript and speech for a given YouTube video.
|
| 14 |
+
|
| 15 |
+
## How to Use
|
| 16 |
+
|
| 17 |
+
1. Enter the YouTube Video ID in the provided text box.
|
| 18 |
+
(The video ID is the unique string of characters in the YouTube video URL after `v=`, e.g., `dQw4w9WgXcQ`)
|
| 19 |
+
2. Select the target language from the dropdown menu.
|
| 20 |
+
3. The translated text will appear in the 'Translated Text' box, and the translated speech will play automatically.
|
| 21 |
+
|
| 22 |
+
## Supported Languages
|
| 23 |
+
|
| 24 |
+
- Arabic (ar)
|
| 25 |
+
- French (fr)
|
| 26 |
+
- Hausa (ha)
|
| 27 |
+
- Afghan Persian / Dari (fa)
|
| 28 |
+
- Pashto (ps)
|
| 29 |
+
|
| 30 |
+
## Notes
|
| 31 |
+
|
| 32 |
+
- Translation for Arabic and French uses Helsinki-NLP models.
|
| 33 |
+
- Translation for Hausa, Afghan Persian, and Pashto uses the Facebook NLLB-200 model.
|
| 34 |
+
- Speech generation for Arabic and French uses gTTS.
|
| 35 |
+
- Speech generation for Hausa, Afghan Persian, and Pashto uses the ElevenLabs API. An ElevenLabs API key is required as a Space secret named `ELEVENLABS_API_KEY` for speech to work in these languages.
|
| 36 |
+
- Proxy settings for YouTube transcript retrieval can be configured using Space secrets named `WEBSHARE_PROXY_UN` and `WEBSHARE_PROXY_PW`.
|
app.py
ADDED
|
@@ -0,0 +1,444 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
import gradio as gr
|
| 2 |
+
import requests
|
| 3 |
+
import torch
|
| 4 |
+
import os
|
| 5 |
+
from transformers import MarianMTModel, MarianTokenizer, AutoTokenizer, AutoModelForSeq2SeqLM
|
| 6 |
+
from youtube_transcript_api import YouTubeTranscriptApi
|
| 7 |
+
from youtube_transcript_api.proxies import WebshareProxyConfig
|
| 8 |
+
from gtts import gTTS
|
| 9 |
+
|
| 10 |
+
# ---- FastAPI Proxy Setup ----
|
| 11 |
+
from fastapi import FastAPI, Request
|
| 12 |
+
from fastapi.responses import StreamingResponse
|
| 13 |
+
import httpx
|
| 14 |
+
import uvicorn
|
| 15 |
+
|
| 16 |
+
fastapi_app = FastAPI()
|
| 17 |
+
|
| 18 |
+
@fastapi_app.get("/proxy")
|
| 19 |
+
async def proxy(url: str):
|
| 20 |
+
async with httpx.AsyncClient() as client:
|
| 21 |
+
r = await client.get(url, timeout=30.0, stream=True)
|
| 22 |
+
if r.status_code != 200:
|
| 23 |
+
return StreamingResponse(content=r.aiter_bytes(), status_code=r.status_code)
|
| 24 |
+
headers = {
|
| 25 |
+
"Content-Type": r.headers.get("content-type", "application/octet-stream"),
|
| 26 |
+
"Access-Control-Allow-Origin": "*"
|
| 27 |
+
}
|
| 28 |
+
return StreamingResponse(r.aiter_bytes(), headers=headers)
|
| 29 |
+
|
| 30 |
+
|
| 31 |
+
# ---- Your Existing Gradio App Below ----
|
| 32 |
+
|
| 33 |
+
# Initialize YouTubeTranscriptApi
|
| 34 |
+
proxy_username = os.environ.get('WEBSHARE_PROXY_UN')
|
| 35 |
+
proxy_password = os.environ.get('WEBSHARE_PROXY_PW')
|
| 36 |
+
|
| 37 |
+
ytt_api = None
|
| 38 |
+
try:
|
| 39 |
+
if proxy_username and proxy_password:
|
| 40 |
+
ytt_api = YouTubeTranscriptApi(
|
| 41 |
+
proxy_config=WebshareProxyConfig(
|
| 42 |
+
proxy_username=proxy_username,
|
| 43 |
+
proxy_password=proxy_password,
|
| 44 |
+
filter_ip_locations=["us"],
|
| 45 |
+
)
|
| 46 |
+
)
|
| 47 |
+
print(f"Successfully connected to the Youtube API with proxy.")
|
| 48 |
+
else:
|
| 49 |
+
ytt_api = YouTubeTranscriptApi()
|
| 50 |
+
print(f"Successfully connected to the Youtube API without proxy.")
|
| 51 |
+
except Exception as e:
|
| 52 |
+
print(f"A proxy error occurred in connecting to the Youtube API: {e}")
|
| 53 |
+
ytt_api = YouTubeTranscriptApi() # Fallback if proxy fails
|
| 54 |
+
|
| 55 |
+
|
| 56 |
+
def getEnglishTranscript(video_id):
|
| 57 |
+
"""Retrieves the English transcript for a given YouTube video ID."""
|
| 58 |
+
if not ytt_api:
|
| 59 |
+
print("YouTubeTranscriptApi not initialized.")
|
| 60 |
+
return ""
|
| 61 |
+
|
| 62 |
+
try:
|
| 63 |
+
transcript_list = ytt_api.list(video_id)
|
| 64 |
+
english_original = None
|
| 65 |
+
for transcript in transcript_list:
|
| 66 |
+
if(transcript.language_code == 'en'):
|
| 67 |
+
english_original = transcript.fetch()
|
| 68 |
+
break
|
| 69 |
+
english_output = ""
|
| 70 |
+
if english_original:
|
| 71 |
+
for snippet in english_original:
|
| 72 |
+
english_output += snippet.text + " "
|
| 73 |
+
else:
|
| 74 |
+
print(f"No English transcript found for video ID: {video_id}")
|
| 75 |
+
return english_output.strip()
|
| 76 |
+
except Exception as e:
|
| 77 |
+
print(f"Error retrieving English transcript for video ID {video_id}: {e}")
|
| 78 |
+
return ""
|
| 79 |
+
|
| 80 |
+
|
| 81 |
+
def getArabicTranscript(video_id):
|
| 82 |
+
"""Retrieves the Arabic transcript for a given YouTube video ID, translating if necessary."""
|
| 83 |
+
if not ytt_api:
|
| 84 |
+
print("YouTubeTranscriptApi not initialized.")
|
| 85 |
+
return ""
|
| 86 |
+
|
| 87 |
+
try:
|
| 88 |
+
transcript_list = ytt_api.list(video_id)
|
| 89 |
+
arabic_translation = None
|
| 90 |
+
for transcript in transcript_list:
|
| 91 |
+
if(transcript.is_translatable):
|
| 92 |
+
arabic_language_code = None
|
| 93 |
+
for lang in transcript.translation_languages:
|
| 94 |
+
if lang.language == 'Arabic':
|
| 95 |
+
arabic_language_code = lang.language_code
|
| 96 |
+
break
|
| 97 |
+
if arabic_language_code:
|
| 98 |
+
print(f"\nTranslating to Arabic ({arabic_language_code})...")
|
| 99 |
+
arabic_translation = transcript.translate(arabic_language_code).fetch()
|
| 100 |
+
print("Arabic Translation Found and Stored.")
|
| 101 |
+
break # Exit after finding the first Arabic translation
|
| 102 |
+
arabic_output = ""
|
| 103 |
+
if arabic_translation:
|
| 104 |
+
for snippet in arabic_translation:
|
| 105 |
+
arabic_output += snippet.text + " "
|
| 106 |
+
else:
|
| 107 |
+
print(f"No translatable transcript found for Arabic for video ID: {video_id}")
|
| 108 |
+
return arabic_output.strip()
|
| 109 |
+
except Exception as e:
|
| 110 |
+
print(f"Error retrieving or translating Arabic transcript for video ID {video_id}: {e}")
|
| 111 |
+
return ""
|
| 112 |
+
|
| 113 |
+
|
| 114 |
+
def getFrenchTranscript(video_id):
|
| 115 |
+
"""Retrieves the French transcript for a given YouTube video ID, translating if necessary."""
|
| 116 |
+
if not ytt_api:
|
| 117 |
+
print("YouTubeTranscriptApi not initialized.")
|
| 118 |
+
return ""
|
| 119 |
+
|
| 120 |
+
try:
|
| 121 |
+
transcript_list = ytt_api.list(video_id)
|
| 122 |
+
french_translation = None
|
| 123 |
+
for transcript in transcript_list:
|
| 124 |
+
if(transcript.is_translatable):
|
| 125 |
+
french_language_code = None
|
| 126 |
+
for lang in transcript.translation_languages:
|
| 127 |
+
if lang.language == 'French':
|
| 128 |
+
french_language_code = lang.language_code
|
| 129 |
+
break
|
| 130 |
+
if french_language_code:
|
| 131 |
+
print(f"\nTranslating to French ({french_language_code})...")
|
| 132 |
+
french_translation = transcript.translate(french_language_code).fetch()
|
| 133 |
+
print("French Translation Found and Stored.")
|
| 134 |
+
break # Exit after finding the first French translation
|
| 135 |
+
french_output = ""
|
| 136 |
+
if french_translation:
|
| 137 |
+
for snippet in french_translation:
|
| 138 |
+
french_output += snippet.text + " "
|
| 139 |
+
else:
|
| 140 |
+
print(f"No translatable transcript found for French for video ID: {video_id}")
|
| 141 |
+
return french_output.strip()
|
| 142 |
+
except Exception as e:
|
| 143 |
+
print(f"Error retrieving or translating French transcript for video ID {video_id}: {e}")
|
| 144 |
+
return ""
|
| 145 |
+
|
| 146 |
+
model, tokenizer, device = None, None, None
|
| 147 |
+
formatted_language_code = ""
|
| 148 |
+
|
| 149 |
+
def setModelAndTokenizer(language_code):
|
| 150 |
+
"""Sets the appropriate translation model and tokenizer based on the target language code."""
|
| 151 |
+
global model, tokenizer, device, formatted_language_code
|
| 152 |
+
|
| 153 |
+
_MODEL_NAME = None
|
| 154 |
+
_readable_name = None
|
| 155 |
+
|
| 156 |
+
if language_code == 'ar':
|
| 157 |
+
_MODEL_NAME = "Helsinki-NLP/opus-mt-tc-big-en-ar"
|
| 158 |
+
_readable_name = "English to Arabic"
|
| 159 |
+
elif language_code == 'fr':
|
| 160 |
+
_MODEL_NAME = "Helsinki-NLP/opus-mt-tc-big-en-fr"
|
| 161 |
+
_readable_name = "English to French"
|
| 162 |
+
elif language_code == 'ha':
|
| 163 |
+
_MODEL_NAME = "facebook/nllb-200-distilled-600M"
|
| 164 |
+
_readable_name = "English to Hausa"
|
| 165 |
+
formatted_language_code = "hau_Latn"
|
| 166 |
+
elif language_code == 'fa':
|
| 167 |
+
_MODEL_NAME = "facebook/nllb-200-distilled-600M"
|
| 168 |
+
_readable_name = "English to Dari/Afghan Persian"
|
| 169 |
+
formatted_language_code = "pes_Arab"
|
| 170 |
+
elif language_code == 'ps':
|
| 171 |
+
_MODEL_NAME = "facebook/nllb-200-distilled-600M"
|
| 172 |
+
_readable_name = "English to Pashto"
|
| 173 |
+
formatted_language_code = "pbt_Arab"
|
| 174 |
+
else:
|
| 175 |
+
return f"Language code '{language_code}' not supported for translation model."
|
| 176 |
+
|
| 177 |
+
if model is not None and tokenizer is not None and hasattr(tokenizer, 'name_or_path') and tokenizer.name_or_path == _MODEL_NAME:
|
| 178 |
+
print(f"Model and tokenizer for {_readable_name} already loaded.")
|
| 179 |
+
return f"Model and tokenizer for {_readable_name} already loaded."
|
| 180 |
+
|
| 181 |
+
|
| 182 |
+
print(f"Loading model and tokenizer for {_readable_name}...")
|
| 183 |
+
if "Helsinki-NLP" in _MODEL_NAME:
|
| 184 |
+
try:
|
| 185 |
+
tokenizer = MarianTokenizer.from_pretrained(_MODEL_NAME)
|
| 186 |
+
model = MarianMTModel.from_pretrained(_MODEL_NAME)
|
| 187 |
+
device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
|
| 188 |
+
model.to(device)
|
| 189 |
+
print(f"Successfully loaded Helsinki-NLP model: {_MODEL_NAME}")
|
| 190 |
+
except Exception as e:
|
| 191 |
+
print(f"Error loading Helsinki-NLP model or tokenizer: {e}")
|
| 192 |
+
return "Error loading translation model."
|
| 193 |
+
|
| 194 |
+
elif "facebook" in _MODEL_NAME:
|
| 195 |
+
try:
|
| 196 |
+
tokenizer = AutoTokenizer.from_pretrained(_MODEL_NAME)
|
| 197 |
+
model = AutoModelForSeq2SeqLM.from_pretrained(_MODEL_NAME, device_map="auto")
|
| 198 |
+
device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
|
| 199 |
+
model.to(device)
|
| 200 |
+
print(f"Successfully loaded Facebook NLLB model: {_MODEL_NAME}")
|
| 201 |
+
except Exception as e:
|
| 202 |
+
print(f"Error loading Facebook NLLB model or tokenizer: {e}")
|
| 203 |
+
return "Error loading translation model."
|
| 204 |
+
else:
|
| 205 |
+
return f"Unknown model type for {_MODEL_NAME}"
|
| 206 |
+
|
| 207 |
+
return f"Model and tokenizer set for {_readable_name}."
|
| 208 |
+
|
| 209 |
+
|
| 210 |
+
def chunk_text_by_tokens(text, tokenizer, max_tokens):
|
| 211 |
+
"""Splits text into chunks based on token count."""
|
| 212 |
+
words = text.split()
|
| 213 |
+
chunks = []
|
| 214 |
+
current_chunk = []
|
| 215 |
+
for word in words:
|
| 216 |
+
trial_chunk = current_chunk + [word]
|
| 217 |
+
# Use add_special_tokens=False to get token count of just the words
|
| 218 |
+
num_tokens = len(tokenizer(" ".join(trial_chunk), add_special_tokens=False).input_ids)
|
| 219 |
+
if num_tokens > max_tokens:
|
| 220 |
+
if current_chunk:
|
| 221 |
+
chunks.append(" ".join(current_chunk))
|
| 222 |
+
current_chunk = [word]
|
| 223 |
+
else:
|
| 224 |
+
current_chunk = trial_chunk
|
| 225 |
+
if current_chunk:
|
| 226 |
+
chunks.append(" ".join(current_chunk))
|
| 227 |
+
return chunks
|
| 228 |
+
|
| 229 |
+
|
| 230 |
+
def translate_me(text, language_code):
|
| 231 |
+
"""Translates the input text to the target language using the loaded model."""
|
| 232 |
+
global model, tokenizer, device, formatted_language_code
|
| 233 |
+
|
| 234 |
+
if model is None or tokenizer is None:
|
| 235 |
+
status = setModelAndTokenizer(language_code)
|
| 236 |
+
if "Error" in status or "not supported" in status:
|
| 237 |
+
print(status)
|
| 238 |
+
return f"Translation failed: {status}"
|
| 239 |
+
|
| 240 |
+
if text is None or text.strip() == "":
|
| 241 |
+
return "No text to translate."
|
| 242 |
+
|
| 243 |
+
try:
|
| 244 |
+
if language_code in ['ar', 'fr']:
|
| 245 |
+
inputs = tokenizer(text, return_tensors="pt", padding=True).to(device)
|
| 246 |
+
translated = model.generate(**inputs)
|
| 247 |
+
return tokenizer.decode(translated[0], skip_special_tokens=True)
|
| 248 |
+
|
| 249 |
+
elif language_code in ['ha','fa','ps']:
|
| 250 |
+
SAFE_CHUNK_SIZE = 900
|
| 251 |
+
tokenizer.src_lang = "eng_Latn" # English
|
| 252 |
+
bos_token_id = tokenizer.convert_tokens_to_ids([formatted_language_code])[0]
|
| 253 |
+
chunks = chunk_text_by_tokens(text, tokenizer, SAFE_CHUNK_SIZE)
|
| 254 |
+
translations = []
|
| 255 |
+
for chunk in chunks:
|
| 256 |
+
inputs = tokenizer(chunk, return_tensors="pt").to(device)
|
| 257 |
+
translated_tokens = model.generate(
|
| 258 |
+
**inputs,
|
| 259 |
+
forced_bos_token_id=bos_token_id,
|
| 260 |
+
max_length=512
|
| 261 |
+
)
|
| 262 |
+
translation = tokenizer.decode(translated_tokens[0], skip_special_tokens=True)
|
| 263 |
+
translations.append(translation)
|
| 264 |
+
return "\n".join(translations)
|
| 265 |
+
else:
|
| 266 |
+
return f"Translation not implemented for language code: {language_code}"
|
| 267 |
+
|
| 268 |
+
except Exception as e:
|
| 269 |
+
print(f"Error during translation: {e}")
|
| 270 |
+
return "Error during translation."
|
| 271 |
+
|
| 272 |
+
|
| 273 |
+
def say_it_api(text, _out_lang):
|
| 274 |
+
"""
|
| 275 |
+
Converts text to speech using gTTS and saves it to a temporary file.
|
| 276 |
+
Returns the file path.
|
| 277 |
+
"""
|
| 278 |
+
if text is None or text.strip() == "":
|
| 279 |
+
print("No text provided for gTTS speech generation.")
|
| 280 |
+
return None
|
| 281 |
+
try:
|
| 282 |
+
tts = gTTS(text=text, lang=_out_lang)
|
| 283 |
+
filename = "/tmp/gtts_audio.mp3"
|
| 284 |
+
tts.save(filename)
|
| 285 |
+
return filename
|
| 286 |
+
except Exception as e:
|
| 287 |
+
print(f"Error during gTTS speech generation: {e}")
|
| 288 |
+
return None
|
| 289 |
+
|
| 290 |
+
def speak_with_elevenlabs_api(text, language_code):
|
| 291 |
+
"""
|
| 292 |
+
Converts text to speech using ElevenLabs API and saves it to a temporary file.
|
| 293 |
+
Returns the file path.
|
| 294 |
+
"""
|
| 295 |
+
ELEVENLABS_API_KEY = os.environ.get('ELEVENLABS_API_KEY')
|
| 296 |
+
VOICE_ID = "EXAVITQu4vr4xnSDxMaL" # Rachel; see docs for voices
|
| 297 |
+
|
| 298 |
+
if not ELEVENLABS_API_KEY:
|
| 299 |
+
print("ElevenLabs API key not found in environment variables.")
|
| 300 |
+
return None
|
| 301 |
+
|
| 302 |
+
if text is None or text.strip() == "":
|
| 303 |
+
print("No text provided for ElevenLabs speech generation.")
|
| 304 |
+
return None
|
| 305 |
+
|
| 306 |
+
url = f"https://api.elevenlabs.io/v1/text-to-speech/{VOICE_ID}"
|
| 307 |
+
headers = {
|
| 308 |
+
"xi-api-key": ELEVENLABS_API_KEY,
|
| 309 |
+
"Content-Type": "application/json"
|
| 310 |
+
}
|
| 311 |
+
data = {
|
| 312 |
+
"text": text,
|
| 313 |
+
"model_id": "eleven_multilingual_v2",
|
| 314 |
+
"voice_settings": {
|
| 315 |
+
"stability": 0.5,
|
| 316 |
+
"similarity_boost": 0.5
|
| 317 |
+
}
|
| 318 |
+
}
|
| 319 |
+
try:
|
| 320 |
+
response = requests.post(url, headers=headers, json=data)
|
| 321 |
+
if response.status_code == 200:
|
| 322 |
+
filename = "/tmp/elevenlabs_audio.mp3"
|
| 323 |
+
with open(filename, 'wb') as f:
|
| 324 |
+
f.write(response.content)
|
| 325 |
+
return filename
|
| 326 |
+
else:
|
| 327 |
+
print(f"Error from ElevenLabs API: Status Code {response.status_code}, Response: {response.text}")
|
| 328 |
+
return None
|
| 329 |
+
except Exception as e:
|
| 330 |
+
print(f"Error calling ElevenLabs API: {e}")
|
| 331 |
+
return None
|
| 332 |
+
|
| 333 |
+
|
| 334 |
+
def speechRouter_api(text,language_code):
|
| 335 |
+
"""
|
| 336 |
+
Routes text-to-speech requests based on language code and returns the audio file path.
|
| 337 |
+
"""
|
| 338 |
+
if text is None or text.strip() == "":
|
| 339 |
+
return None # No text to speak
|
| 340 |
+
|
| 341 |
+
if language_code == 'ar':
|
| 342 |
+
return say_it_api(text,language_code)
|
| 343 |
+
elif language_code == 'fr':
|
| 344 |
+
return say_it_api(text,language_code)
|
| 345 |
+
elif language_code in ['ha', 'fa', 'ps']:
|
| 346 |
+
return speak_with_elevenlabs_api(text, language_code)
|
| 347 |
+
else:
|
| 348 |
+
print(f"Language code '{language_code}' not supported for speech generation.")
|
| 349 |
+
return None
|
| 350 |
+
|
| 351 |
+
|
| 352 |
+
def translate_and_speak_api_wrapper(video_id, out_lang):
|
| 353 |
+
"""
|
| 354 |
+
Translates the given English text from a Youtube video transcript
|
| 355 |
+
to other languages and generates speech for the translated text.
|
| 356 |
+
|
| 357 |
+
Args:
|
| 358 |
+
video_id: The Youtube video ID to translate and speak.
|
| 359 |
+
out_lang: The language to translate to.
|
| 360 |
+
|
| 361 |
+
Returns:
|
| 362 |
+
A tuple containing:
|
| 363 |
+
- translated_text (str): The translated text.
|
| 364 |
+
- audio_file_path (str or None): The path to the generated audio file, or None if speech generation failed.
|
| 365 |
+
"""
|
| 366 |
+
# Ensure model and tokenizer are loaded for the target language
|
| 367 |
+
model_status = setModelAndTokenizer(out_lang)
|
| 368 |
+
if "Error" in model_status or "not supported" in model_status:
|
| 369 |
+
return f"Translation failed: {model_status}", None
|
| 370 |
+
|
| 371 |
+
english_text = getEnglishTranscript(video_id)
|
| 372 |
+
|
| 373 |
+
if english_text == "":
|
| 374 |
+
return "No English transcript available to translate.", None
|
| 375 |
+
|
| 376 |
+
translated_text = ""
|
| 377 |
+
if out_lang == "ar":
|
| 378 |
+
translated_text = getArabicTranscript(video_id)
|
| 379 |
+
if translated_text.strip() == "": # If no direct Arabic transcript, translate English
|
| 380 |
+
print("No direct Arabic transcript found, translating from English.")
|
| 381 |
+
translated_text = translate_me(english_text,out_lang)
|
| 382 |
+
elif out_lang == "fr":
|
| 383 |
+
translated_text = getFrenchTranscript(video_id)
|
| 384 |
+
if translated_text.strip() == "": # If no direct French transcript, translate English
|
| 385 |
+
print("No direct French transcript found, translating from English.")
|
| 386 |
+
translated_text = translate_me(english_text,out_lang)
|
| 387 |
+
elif out_lang in ["ha", "fa", "ps"]:
|
| 388 |
+
translated_text = translate_me(english_text,out_lang)
|
| 389 |
+
else:
|
| 390 |
+
return f"Language code '{out_lang}' not supported for translation.", None
|
| 391 |
+
|
| 392 |
+
if translated_text is None or translated_text.strip() == "" or "Translation failed" in translated_text:
|
| 393 |
+
return f"Translation to {out_lang} failed.", None
|
| 394 |
+
|
| 395 |
+
# Generate speech using the API wrapper
|
| 396 |
+
audio_file_path = speechRouter_api(translated_text, out_lang)
|
| 397 |
+
|
| 398 |
+
return translated_text, audio_file_path
|
| 399 |
+
|
| 400 |
+
# This function will serve as the API endpoint for Gradio.
|
| 401 |
+
def translate_and_speak_api(video_id: str, language_code: str):
|
| 402 |
+
"""
|
| 403 |
+
API endpoint to translate and speak YouTube video transcripts.
|
| 404 |
+
"""
|
| 405 |
+
print(f"Received request for video ID: {video_id}, language: {language_code}")
|
| 406 |
+
translated_text, audio_file_path = translate_and_speak_api_wrapper(video_id, language_code)
|
| 407 |
+
|
| 408 |
+
# Return the translated text and the audio file path (or an empty string if None)
|
| 409 |
+
# Returning an empty string instead of None for the audio output might resolve
|
| 410 |
+
# the TypeError when autoplay is True.
|
| 411 |
+
return translated_text, audio_file_path if audio_file_path is not None else ""
|
| 412 |
+
|
| 413 |
+
|
| 414 |
+
# Define input components
|
| 415 |
+
video_id_input = gr.Textbox(label="YouTube Video ID")
|
| 416 |
+
language_dropdown = gr.Dropdown(
|
| 417 |
+
label="Target Language",
|
| 418 |
+
choices=['ar', 'fr', 'ha', 'fa', 'ps'], # Supported language codes
|
| 419 |
+
value='ar' # Default value
|
| 420 |
+
)
|
| 421 |
+
|
| 422 |
+
# Define output components
|
| 423 |
+
translated_text_output = gr.Textbox(label="Translated Text")
|
| 424 |
+
audio_output = gr.Audio(label="Translated Speech", autoplay=True)
|
| 425 |
+
|
| 426 |
+
# Combine components and the translate_and_speak_api function into a Gradio interface
|
| 427 |
+
demo = gr.Interface(
|
| 428 |
+
fn=translate_and_speak_api, # Use the API endpoint function
|
| 429 |
+
inputs=[video_id_input, language_dropdown], # Inputs match the API function arguments
|
| 430 |
+
outputs=[translated_text_output, audio_output], # Outputs match the API function return values
|
| 431 |
+
title="YouTube Translator and Speaker",
|
| 432 |
+
description="Enter a YouTube video ID and select a language to get the translated transcript and speech."
|
| 433 |
+
)
|
| 434 |
+
|
| 435 |
+
# ---- Launch Both Gradio and Proxy Server ----
|
| 436 |
+
import multiprocessing
|
| 437 |
+
|
| 438 |
+
def run_fastapi():
|
| 439 |
+
uvicorn.run("app:fastapi_app", host="0.0.0.0", port=5001, log_level="info")
|
| 440 |
+
|
| 441 |
+
if __name__ == "__main__":
|
| 442 |
+
p = multiprocessing.Process(target=run_fastapi, daemon=True)
|
| 443 |
+
p.start()
|
| 444 |
+
demo.launch()
|
requirements.txt
ADDED
|
@@ -0,0 +1,12 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
gradio
|
| 2 |
+
youtube-transcript-api
|
| 3 |
+
transformers
|
| 4 |
+
sacremoses
|
| 5 |
+
gTTS
|
| 6 |
+
requests
|
| 7 |
+
torch
|
| 8 |
+
sentencepiece
|
| 9 |
+
accelerate
|
| 10 |
+
fastapi
|
| 11 |
+
uvicorn
|
| 12 |
+
httpx
|