Spaces:
Runtime error
Runtime error
File size: 25,091 Bytes
a61a47b fe656c3 a61a47b fe656c3 a61a47b fe656c3 a61a47b fe656c3 a61a47b fe656c3 a61a47b fe656c3 a61a47b fe656c3 a61a47b fe656c3 a61a47b fe656c3 a61a47b fe656c3 a61a47b fe656c3 a61a47b |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 |
#!/usr/bin/env python3
"""
QUADRANT RAG System - Enhanced UI v2 with Document Library
Professional chat interface with persistent document storage
"""
import os
import streamlit as st
import json
import uuid
import time
from typing import List, Dict, Any, Optional
from pathlib import Path
from datetime import datetime, timezone
import tempfile
import base64
# Load environment variables first
import os
from dotenv import load_dotenv
load_dotenv()
# Import RAG components
from rag_core import DynamicRAG, extract_pdf_pages, create_chunks
# Page configuration
st.set_page_config(
page_title="QUADRANT RAG - AI Document Assistant",
page_icon="π€",
layout="wide",
initial_sidebar_state="expanded"
)
# Enhanced CSS for modern UI
st.markdown("""
<style>
/* CSS Variables for theme */
:root {
--primary-color: #5468ff;
--secondary-color: #6c63ff;
--accent-color: #00d4ff;
--background-color: #f8f9fa;
--card-background: #ffffff;
--text-primary: #2c3e50;
--text-secondary: #718096;
--border-color: #e2e8f0;
--shadow-sm: 0 2px 4px rgba(0,0,0,0.05);
--shadow-md: 0 4px 12px rgba(0,0,0,0.08);
--shadow-lg: 0 10px 30px rgba(0,0,0,0.1);
}
/* Reset and base styles */
.main {
padding: 0;
background-color: var(--background-color);
}
.stApp {
background-color: var(--background-color);
}
/* Sidebar styling */
section[data-testid="stSidebar"] {
background-color: var(--card-background);
border-right: 1px solid var(--border-color);
box-shadow: 2px 0 5px rgba(0,0,0,0.05);
}
section[data-testid="stSidebar"] .block-container {
padding: 1.5rem 1rem;
}
/* Header */
.main-header {
background: linear-gradient(135deg, var(--primary-color) 0%, var(--secondary-color) 100%);
color: white;
padding: 1.5rem 2rem;
margin: -1rem -1rem 1rem -1rem;
box-shadow: var(--shadow-md);
}
.main-header h1 {
margin: 0;
font-size: 2rem;
font-weight: 700;
}
.main-header p {
margin: 0.5rem 0 0 0;
opacity: 0.9;
font-size: 1.1rem;
}
/* Document library styles */
.doc-library-header {
background: linear-gradient(135deg, #667eea 0%, #764ba2 100%);
margin: -1.5rem -1rem 1rem -1rem;
padding: 1.5rem 1rem;
color: white;
}
.doc-library-header h3 {
margin: 0;
font-size: 1.3rem;
font-weight: 600;
}
.doc-count {
font-size: 0.9rem;
opacity: 0.9;
margin-top: 0.25rem;
}
/* Document cards in sidebar */
.doc-card {
background: var(--card-background);
border: 1px solid var(--border-color);
border-radius: 8px;
padding: 1rem;
margin-bottom: 0.75rem;
cursor: pointer;
transition: all 0.2s ease;
}
.doc-card:hover {
transform: translateY(-2px);
box-shadow: var(--shadow-md);
border-color: var(--primary-color);
}
.doc-card.active {
border-color: var(--primary-color);
background: linear-gradient(to right, #f0f4ff 0%, #ffffff 100%);
box-shadow: var(--shadow-md);
}
.doc-card-title {
font-weight: 600;
color: var(--text-primary);
margin-bottom: 0.25rem;
font-size: 0.95rem;
}
.doc-card-meta {
font-size: 0.8rem;
color: var(--text-secondary);
display: flex;
justify-content: space-between;
align-items: center;
}
.doc-card-date {
font-size: 0.75rem;
color: var(--text-secondary);
margin-top: 0.25rem;
}
/* Chat interface */
.chat-container {
height: calc(100vh - 200px);
display: flex;
flex-direction: column;
background: var(--card-background);
border-radius: 12px;
box-shadow: var(--shadow-lg);
margin: 1rem;
overflow: hidden;
}
.chat-header {
background: linear-gradient(135deg, #f0f4ff 0%, #e8eeff 100%);
border-bottom: 1px solid var(--border-color);
padding: 1.5rem;
}
.chat-header-title {
font-size: 1.1rem;
font-weight: 600;
color: var(--text-primary);
margin: 0;
white-space: nowrap;
overflow: hidden;
text-overflow: ellipsis;
}
.chat-header-subtitle {
font-size: 0.9rem;
color: var(--text-secondary);
margin-top: 0.25rem;
}
.chat-messages {
flex: 1;
overflow-y: auto;
padding: 1.5rem;
background: #fafbfc;
}
/* Message styles */
.message {
margin-bottom: 1.5rem;
animation: fadeInUp 0.3s ease;
}
@keyframes fadeInUp {
from {
opacity: 0;
transform: translateY(10px);
}
to {
opacity: 1;
transform: translateY(0);
}
}
.message.user {
display: flex;
justify-content: flex-end;
}
.message.assistant {
display: flex;
justify-content: flex-start;
}
.message-content {
max-width: 70%;
padding: 1rem 1.25rem;
border-radius: 18px;
position: relative;
animation: scaleIn 0.2s ease;
}
@keyframes scaleIn {
from {
transform: scale(0.95);
}
to {
transform: scale(1);
}
}
.message.user .message-content {
background: linear-gradient(135deg, var(--primary-color) 0%, var(--secondary-color) 100%);
color: white;
border-bottom-right-radius: 4px;
}
.message.assistant .message-content {
background: white;
border: 1px solid var(--border-color);
color: var(--text-primary);
border-bottom-left-radius: 4px;
}
/* Avatar */
.message-avatar {
width: 36px;
height: 36px;
border-radius: 50%;
display: flex;
align-items: center;
justify-content: center;
font-weight: 600;
margin: 0 0.75rem;
}
.message.user .message-avatar {
background: linear-gradient(135deg, var(--primary-color) 0%, var(--secondary-color) 100%);
color: white;
}
.message.assistant .message-avatar {
background: linear-gradient(135deg, #f0f4ff 0%, #e8eeff 100%);
color: var(--primary-color);
}
/* Citations */
.citations {
margin-top: 0.75rem;
padding-top: 0.75rem;
border-top: 1px solid rgba(0,0,0,0.1);
}
.citation-item {
background: rgba(0,0,0,0.05);
padding: 0.5rem 0.75rem;
border-radius: 8px;
margin-top: 0.5rem;
font-size: 0.85rem;
border-left: 3px solid var(--accent-color);
}
/* Input area */
.chat-input-container {
border-top: 1px solid var(--border-color);
background: white;
padding: 1.5rem;
}
.chat-input-wrapper {
display: flex;
gap: 0.75rem;
align-items: flex-end;
}
.chat-input {
flex: 1;
background: var(--background-color);
border: 2px solid var(--border-color);
border-radius: 12px;
padding: 0.75rem 1rem;
font-size: 1rem;
transition: all 0.2s ease;
resize: none;
min-height: 50px;
}
.chat-input:focus {
outline: none;
border-color: var(--primary-color);
background: white;
}
.send-button {
background: linear-gradient(135deg, var(--primary-color) 0%, var(--secondary-color) 100%);
color: white;
border: none;
border-radius: 12px;
padding: 0.75rem 1.5rem;
font-size: 1rem;
font-weight: 600;
cursor: pointer;
transition: all 0.2s ease;
display: flex;
align-items: center;
gap: 0.5rem;
}
.send-button:hover {
transform: translateY(-2px);
box-shadow: var(--shadow-md);
}
.send-button:active {
transform: translateY(0);
}
/* Typing indicator */
.typing-indicator {
display: inline-flex;
padding: 0.75rem 1rem;
background: white;
border-radius: 18px;
border: 1px solid var(--border-color);
gap: 4px;
}
.typing-dot {
width: 8px;
height: 8px;
background: var(--primary-color);
border-radius: 50%;
animation: typing 1.4s infinite;
}
.typing-dot:nth-child(1) { animation-delay: -0.32s; }
.typing-dot:nth-child(2) { animation-delay: -0.16s; }
@keyframes typing {
0%, 80%, 100% {
opacity: 0.5;
transform: scale(0.8);
}
40% {
opacity: 1;
transform: scale(1);
}
}
/* Upload area */
.upload-area {
border: 2px dashed var(--primary-color);
border-radius: 12px;
padding: 3rem;
text-align: center;
background: linear-gradient(to bottom, #f0f4ff 0%, #ffffff 100%);
transition: all 0.3s ease;
margin: 1rem;
}
.upload-area:hover {
border-color: var(--secondary-color);
background: linear-gradient(to bottom, #e8eeff 0%, #f8f9ff 100%);
}
.upload-icon {
font-size: 4rem;
color: var(--primary-color);
margin-bottom: 1rem;
}
/* Empty state */
.empty-state {
text-align: center;
padding: 3rem;
color: var(--text-secondary);
}
.empty-state-icon {
font-size: 4rem;
opacity: 0.3;
margin-bottom: 1rem;
}
/* Buttons */
.stButton > button {
background: linear-gradient(135deg, var(--primary-color) 0%, var(--secondary-color) 100%);
color: white;
border: none;
padding: 0.75rem 1.5rem;
border-radius: 8px;
font-weight: 600;
transition: all 0.2s ease;
}
.stButton > button:hover {
transform: translateY(-2px);
box-shadow: var(--shadow-md);
}
/* Hide Streamlit defaults */
#MainMenu {visibility: hidden;}
footer {visibility: hidden;}
/* Scrollbar */
::-webkit-scrollbar {
width: 8px;
height: 8px;
}
::-webkit-scrollbar-track {
background: var(--background-color);
}
::-webkit-scrollbar-thumb {
background: var(--border-color);
border-radius: 4px;
}
::-webkit-scrollbar-thumb:hover {
background: var(--text-secondary);
}
</style>
""", unsafe_allow_html=True)
# Initialize session state
if 'rag_system' not in st.session_state:
st.session_state.rag_system = None
if 'current_doc' not in st.session_state:
st.session_state.current_doc = None
if 'chat_history' not in st.session_state:
st.session_state.chat_history = []
if 'all_documents' not in st.session_state:
st.session_state.all_documents = []
if 'processing' not in st.session_state:
st.session_state.processing = False
if 'waiting_for_response' not in st.session_state:
st.session_state.waiting_for_response = False
def init_rag_system():
"""Initialize the RAG system"""
try:
# Check environment variables
from dotenv import load_dotenv
load_dotenv() # Reload environment variables
openai_key = os.environ.get('OPENAI_API_KEY', '')
qdrant_url = os.environ.get('QDRANT_URL', '')
qdrant_key = os.environ.get('QDRANT_API_KEY', '')
if not openai_key or openai_key == 'your-openai-api-key-here':
st.error("β OpenAI API key not configured. Please set OPENAI_API_KEY in your environment.")
return False
if not qdrant_url or not qdrant_key:
st.warning("β οΈ Qdrant Cloud credentials not found. Using local file storage.")
# Show initialization progress
progress_placeholder = st.empty()
with progress_placeholder:
with st.spinner("π Initializing RAG System..."):
try:
st.session_state.rag_system = DynamicRAG()
# Load all documents from Qdrant
st.session_state.all_documents = st.session_state.rag_system.get_all_documents()
except Exception as init_error:
st.error(f"β RAG System initialization failed: {str(init_error)}")
# Continue anyway for basic functionality
st.session_state.all_documents = []
progress_placeholder.success("β
RAG System initialized successfully!")
return True
except Exception as e:
st.error(f"β Failed to initialize RAG system: {str(e)}")
# Don't fail completely - allow app to show error state
return True
def process_pdf_upload(uploaded_file) -> Optional[Dict[str, Any]]:
"""Process uploaded PDF file"""
try:
st.session_state.processing = True
# Save uploaded file
temp_path = Path(tempfile.gettempdir()) / f"{uuid.uuid4().hex}.pdf"
with open(temp_path, "wb") as f:
f.write(uploaded_file.getvalue())
# Extract text
pages = extract_pdf_pages(str(temp_path))
# Create chunks
chunks = create_chunks(pages, chunk_size=3000, overlap=200)
# Generate document ID
doc_id = f"{uploaded_file.name.replace('.pdf', '')}_{int(time.time())}"
# Store in Qdrant
st.session_state.rag_system.store_document(doc_id, chunks)
# Create document info
doc_info = {
'doc_id': doc_id,
'title': uploaded_file.name,
'pages': len(pages),
'chunks': len(chunks),
'upload_time': datetime.now(timezone.utc).isoformat()
}
# Update documents list
st.session_state.all_documents = st.session_state.rag_system.get_all_documents()
# Clean up
temp_path.unlink()
return doc_info
except Exception as e:
st.error(f"Error processing PDF: {str(e)}")
return None
finally:
st.session_state.processing = False
def query_document(question: str) -> tuple[str, List[Dict[str, Any]]]:
"""Query the current document"""
try:
if not st.session_state.current_doc:
return "Please select a document first.", []
# Search in current document - increased for better coverage
search_results = st.session_state.rag_system.search(
query=question,
doc_id=st.session_state.current_doc['doc_id'],
top_k=10
)
if not search_results:
return "I couldn't find relevant information about that in the document.", []
# Generate answer
answer = st.session_state.rag_system.generate_answer(question, search_results)
# Check if the answer indicates insufficient evidence
insufficient_keywords = ["insufficient evidence", "couldn't find", "no relevant information", "cannot answer"]
# Prepare citations only if the answer has sufficient evidence
citations = []
if not any(keyword in answer.lower() for keyword in insufficient_keywords):
for i, result in enumerate(search_results[:3]):
citations.append({
'page': result['page'],
'text': result['text'][:150] + "..." if len(result['text']) > 150 else result['text'],
'score': round(result['score'], 3)
})
return answer, citations
except Exception as e:
return f"Sorry, I encountered an error: {str(e)}", []
def render_sidebar():
"""Render the document library sidebar"""
with st.sidebar:
# Header
st.markdown("""
<div class="doc-library-header">
<h3>π Document Library</h3>
<div class="doc-count">{} documents stored</div>
</div>
""".format(len(st.session_state.all_documents)), unsafe_allow_html=True)
# Upload new document
with st.expander("π€ Upload New Document", expanded=False):
uploaded_file = st.file_uploader(
"Choose a PDF file",
type=['pdf'],
label_visibility="collapsed",
disabled=st.session_state.processing
)
if uploaded_file and st.button("Upload", type="primary", use_container_width=True):
with st.spinner("Processing..."):
doc = process_pdf_upload(uploaded_file)
if doc:
st.success("β
Document uploaded successfully!")
st.rerun()
# Document list
if st.session_state.all_documents:
st.markdown("### Your Documents")
for doc in st.session_state.all_documents:
# Check if this is the current document
is_active = (st.session_state.current_doc and
doc['doc_id'] == st.session_state.current_doc['doc_id'])
# Document card
card_class = "doc-card active" if is_active else "doc-card"
col1, col2 = st.columns([5, 1])
with col1:
if st.button(
f"π **{doc['title'][:30]}{'...' if len(doc['title']) > 30 else ''}**\n\n"
f"π {doc['pages']} pages β’ {doc['chunks']} chunks",
key=f"doc_{doc['doc_id']}",
use_container_width=True
):
st.session_state.current_doc = doc
st.session_state.chat_history = []
st.rerun()
with col2:
if st.button("ποΈ", key=f"del_{doc['doc_id']}",
help="Delete this document"):
if st.session_state.rag_system.delete_document(doc['doc_id']):
st.session_state.all_documents = st.session_state.rag_system.get_all_documents()
if (st.session_state.current_doc and
doc['doc_id'] == st.session_state.current_doc['doc_id']):
st.session_state.current_doc = None
st.session_state.chat_history = []
st.rerun()
else:
st.markdown("""
<div class="empty-state">
<div class="empty-state-icon">π</div>
<p>No documents yet</p>
<p style="font-size: 0.85rem;">Upload your first PDF to get started</p>
</div>
""", unsafe_allow_html=True)
def render_chat_interface():
"""Render the main chat interface"""
if not st.session_state.current_doc:
# No document selected
st.markdown("""
<div class="upload-area">
<div class="upload-icon">π</div>
<h2>Welcome to QUADRANT RAG Medical Assistant</h2>
<p style="font-size: 1.1rem; color: #718096; margin-top: 1rem;">
Upload medical documents or select from your library to start AI-powered medical Q&A
</p>
<p style="font-size: 0.95rem; color: #a0aec0; margin-top: 0.5rem;">
β¨ Powered by OpenAI GPT-5-mini & Qdrant Cloud β’ Optimized for Medical Education
</p>
</div>
""", unsafe_allow_html=True)
else:
# Chat interface
title = st.session_state.current_doc['title']
# Truncate overly long titles for cleaner UI
display_title = (title[:100] + "β¦") if len(title) > 100 else title
pages = st.session_state.current_doc['pages']
chunks = st.session_state.current_doc['chunks']
st.markdown(
f"""
<div class="chat-header">
<div class="chat-header-title" title="{title}">π¬ Chatting with: {display_title}</div>
<div class="chat-header-subtitle">{pages} pages β’ {chunks} chunks β’ Ask anything about this document</div>
</div>
""",
unsafe_allow_html=True,
)
# New chat UI using Streamlit's native components
if not st.session_state.chat_history:
st.info("Start a conversation about your document. Ask me to explain, summarize, or find specifics.")
for msg in st.session_state.chat_history:
if msg['type'] == 'user':
with st.chat_message("user"):
st.markdown(msg['content'])
else:
with st.chat_message("assistant"):
st.markdown(msg['content'])
if msg.get('citations'):
with st.expander(f"π {len(msg['citations'])} Sources"):
for i, cite in enumerate(msg['citations'], 1):
st.markdown(f"**[{i}] Page {cite['page']}** (Relevance: {cite['score']:.3f})")
st.text(cite['text'][:200] + "..." if len(cite['text']) > 200 else cite['text'])
st.divider()
# Chat input and immediate handling
if prompt := st.chat_input("Ask anything about this documentβ¦"):
st.session_state.chat_history.append({'type': 'user', 'content': prompt})
with st.chat_message("assistant"):
with st.spinner("Thinking..."):
answer, citations = query_document(prompt)
st.session_state.chat_history.append({
'type': 'assistant',
'content': answer,
'citations': citations if citations else None
})
st.markdown(answer)
if citations:
with st.expander(f"π {len(citations)} Sources"):
for i, cite in enumerate(citations, 1):
st.markdown(f"**[{i}] Page {cite['page']}** (Relevance: {cite['score']:.3f})")
st.text(cite['text'][:200] + "..." if len(cite['text']) > 200 else cite['text'])
st.divider()
# Prevent legacy UI from rendering below
return
def main():
# Configuration section for missing environment variables
openai_key = os.environ.get('OPENAI_API_KEY', '')
# Check if we're in Hugging Face Spaces environment
is_hf_spaces = os.environ.get('SPACE_ID') is not None
if not openai_key or openai_key == 'your-openai-api-key-here':
if is_hf_spaces:
st.error("π **OpenAI API Key Required for Hugging Face Spaces**")
st.markdown("""
To use this app on Hugging Face Spaces:
1. Go to your Space Settings
2. Add a new secret named `OPENAI_API_KEY`
3. Enter your OpenAI API key as the value
4. Restart the Space
You can get an API key from: https://platform.openai.com/api-keys
""")
else:
st.error("π **OpenAI API Key Required**")
st.markdown("""
Please set your OpenAI API key:
1. Add `OPENAI_API_KEY=your-key-here` to the `.env` file, OR
2. Set it as an environment variable in your deployment platform
""")
# Quick input for testing (only in local environment)
with st.expander("π‘ Quick Setup (for testing)"):
key_input = st.text_input("Enter OpenAI API Key:", type="password")
if st.button("Set API Key") and key_input:
os.environ['OPENAI_API_KEY'] = key_input
st.success("β
API Key set! Initializing system...")
st.rerun()
st.stop()
# Initialize system (non-blocking for faster health check)
if not st.session_state.rag_system:
init_rag_system() # This now doesn't block the app even if it fails
# Header
st.markdown("""
<div class="main-header">
<h1>π€ QUADRANT RAG - Document AI Assistant</h1>
<p>Powered by Qdrant Vector Database & OpenAI GPT-4o-mini</p>
</div>
""", unsafe_allow_html=True)
# Sidebar
render_sidebar()
# Main content
render_chat_interface()
if __name__ == "__main__":
main()
|