Spaces:
Sleeping
Sleeping
| import gradio as gr | |
| import pandas as pd | |
| import plotly.graph_objects as go | |
| df = pd.read_csv("code_eval_board.csv") | |
| df = df.sort_values(by=["Average score"], ascending=False) | |
| headers = df.columns.to_list() | |
| def plot_throughput(bs=1): | |
| throughput_column = 'Throughput (tokens/s)' if bs==1 else 'Throughput (tokens/s) bs=50' | |
| df['symbol'] = 2 # Triangle | |
| df['color'] = '' | |
| df.loc[df['Models'].str.contains('StarCoder|SantaCoder'), 'color'] = 'orange' | |
| df.loc[df['Models'].str.contains('CodeGen'), 'color'] = 'pink' | |
| df.loc[df['Models'].str.contains('Replit'), 'color'] = 'purple' | |
| fig = go.Figure() | |
| for i in df.index: | |
| fig.add_trace(go.Scatter( | |
| x=[df.loc[i, throughput_column]], | |
| y=[df.loc[i, 'Average score']], | |
| mode='markers', | |
| marker=dict( | |
| size=[df.loc[i, 'Size (B)'] + 10], | |
| color=df.loc[i, 'color'], | |
| symbol=df.loc[i, 'symbol'] | |
| ), | |
| name=df.loc[i, 'Models'], | |
| hovertemplate = | |
| '<b>%{text}</b><br><br>' + | |
| 'throughput_column: %{x}<br>' + | |
| 'Average Score: %{y}<br>' + | |
| 'Peak Memory (MB): ' + str(df.loc[i, 'Peak Memory (MB)']) + '<br>' + | |
| 'Human Eval (Python): ' + str(df.loc[i, 'humaneval-python']), | |
| text=[df.loc[i, 'Models']], | |
| showlegend=True | |
| )) | |
| fig.update_layout( | |
| autosize=False, | |
| width=1000, | |
| height=800, | |
| title=f'Average Score Vs Throughput (A100-80GB, Batch Size {bs}, Float16)', | |
| xaxis_title='throughput_column', | |
| yaxis_title='Average Code Score', | |
| ) | |
| return fig | |
| demo = gr.Blocks() | |
| with demo: | |
| with gr.Row(): | |
| gr.Markdown( | |
| """<div style="text-align: center;"><h1> β Base <span style='color: #e6b800;'>Code</span> Models <span style='color: #e6b800;'>Evaluation</span></h1></div>\ | |
| <br>\ | |
| <p>We compare base multilingual code generation models on <a href="https://huggingface.co/datasets/openai_humaneval">HumanEval</a> benchmark and <a href="https://huggingface.co/datasets/nuprl/MultiPL-E">MultiPL-E</a>, in addition to throughput measurment\ | |
| and information about the model. We only compare pre-trained models without instruction tuning.</p>""" | |
| ) | |
| with gr.Column(): | |
| with gr.Tabs(elem_classes="A100-tabs") as A100_tabs: | |
| with gr.TabItem("π Evaluation table", id=0): | |
| leaderboard_df = gr.components.Dataframe( | |
| value=df, headers=headers, datatype=["str" for _ in range(len(headers))] | |
| ) | |
| with gr.TabItem("π Performance Plot", id=1): | |
| with gr.Row(): | |
| bs_1_plot = gr.components.Plot( | |
| value=plot_throughput(bs=1), | |
| elem_id="bs1-plot", | |
| show_label=False, | |
| ) | |
| bs_50_plt = gr.components.Plot( | |
| value=plot_throughput(bs=50), | |
| elem_id="bs50-plot", | |
| show_label=False, | |
| ) | |
| with gr.Row(): | |
| gr.Markdown( | |
| """Notes: | |
| <ul> | |
| <li> Average score is the average pass@1 over all languages, for each model we exclude languages with a pass@1 score lower than 1 for the averaging.</li> | |
| <li> Throughputs are measured using <a href="https://github.com/huggingface/optimum-benchmark/tree/main">Optimum-Benchmark</a> which powers <a href="https://huggingface.co/spaces/optimum/llm-perf-leaderboard">LLM Perf LeaderBoard</a>.</li> | |
| <li> HumanEval-Python, reports the pass@1 on HumanEval, the rest is from MultiPL-E benchmark.</li> | |
| <li> All models were evaluated with the <a href="https://github.com/bigcode-project/bigcode-evaluation-harness/tree/main">bigcode-evaluation-harness</a> with top-p=0.95, temperature=0.2 and n_samples=50.</li> | |
| <li> #languages column represents the number of programming languages included during the pretraining. | |
| </ul>""" | |
| ) | |
| demo.launch() | |