Spaces:
Running
Running
| #!/usr/bin/env python | |
| from huggingface_hub import snapshot_download | |
| from src.backend.manage_requests import get_eval_requests | |
| from src.backend.sort_queue import sort_models_by_priority | |
| from src.backend.envs import Tasks, EVAL_REQUESTS_PATH_BACKEND, EVAL_RESULTS_PATH_BACKEND | |
| from src.backend.manage_requests import EvalRequest | |
| from src.leaderboard.read_evals import EvalResult | |
| from src.envs import QUEUE_REPO, RESULTS_REPO, API | |
| import logging | |
| import pprint | |
| logging.getLogger("openai").setLevel(logging.WARNING) | |
| logging.basicConfig(level=logging.ERROR) | |
| pp = pprint.PrettyPrinter(width=80) | |
| PENDING_STATUS = "PENDING" | |
| RUNNING_STATUS = "RUNNING" | |
| FINISHED_STATUS = "FINISHED" | |
| FAILED_STATUS = "FAILED" | |
| TASKS_HARNESS = [task.value for task in Tasks] | |
| snapshot_download( | |
| repo_id=RESULTS_REPO, revision="main", local_dir=EVAL_RESULTS_PATH_BACKEND, repo_type="dataset", max_workers=60 | |
| ) | |
| snapshot_download( | |
| repo_id=QUEUE_REPO, revision="main", local_dir=EVAL_REQUESTS_PATH_BACKEND, repo_type="dataset", max_workers=60 | |
| ) | |
| def request_to_result_name(request: EvalRequest) -> str: | |
| org_and_model = request.model.split("/", 1) | |
| if len(org_and_model) == 1: | |
| model = org_and_model[0] | |
| res = f"{model}_{request.precision}" | |
| else: | |
| org = org_and_model[0] | |
| model = org_and_model[1] | |
| res = f"{org}_{model}_{request.precision}" | |
| return res | |
| def process_finished_requests() -> bool: | |
| current_finished_status = [FINISHED_STATUS] | |
| if False: | |
| import os | |
| import dateutil | |
| model_result_filepaths = [] | |
| results_path = f"{EVAL_RESULTS_PATH_BACKEND}/EleutherAI/gpt-neo-1.3B" | |
| requests_path = f"{EVAL_REQUESTS_PATH_BACKEND}/EleutherAI/gpt-neo-1.3B_eval_request_False_False_False.json" | |
| for root, _, files in os.walk(results_path): | |
| # We should only have json files in model results | |
| if len(files) == 0 or any([not f.endswith(".json") for f in files]): | |
| continue | |
| # Sort the files by date | |
| try: | |
| files.sort(key=lambda x: x.removesuffix(".json").removeprefix("results_")[:-7]) | |
| except dateutil.parser._parser.ParserError: | |
| files = [files[-1]] | |
| for file in files: | |
| model_result_filepaths.append(os.path.join(root, file)) | |
| eval_results = {} | |
| for model_result_filepath in model_result_filepaths: | |
| # Creation of result | |
| eval_result = EvalResult.init_from_json_file(model_result_filepath) | |
| eval_result.update_with_request_file(requests_path) | |
| print("XXX", eval_result) | |
| # Store results of same eval together | |
| eval_name = eval_result.eval_name | |
| if eval_name in eval_results.keys(): | |
| eval_results[eval_name].results.update({k: v for k, v in eval_result.results.items() if v is not None}) | |
| else: | |
| eval_results[eval_name] = eval_result | |
| print(eval_results) | |
| return True | |
| # Get all eval request that are FINISHED, if you want to run other evals, change this parameter | |
| eval_requests: list[EvalRequest] = get_eval_requests( | |
| job_status=current_finished_status, hf_repo=QUEUE_REPO, local_dir=EVAL_REQUESTS_PATH_BACKEND | |
| ) | |
| # Sort the evals by priority (first submitted first run) | |
| eval_requests: list[EvalRequest] = sort_models_by_priority(api=API, models=eval_requests) | |
| # XXX | |
| # eval_requests = [r for r in eval_requests if 'neo-1.3B' in r.model] | |
| import random | |
| random.shuffle(eval_requests) | |
| from src.leaderboard.read_evals import get_raw_eval_results | |
| eval_results: list[EvalResult] = get_raw_eval_results(EVAL_RESULTS_PATH_BACKEND, EVAL_REQUESTS_PATH_BACKEND) | |
| result_name_to_request = {request_to_result_name(r): r for r in eval_requests} | |
| result_name_to_result = {r.eval_name: r for r in eval_results} | |
| for eval_request in eval_requests: | |
| result_name: str = request_to_result_name(eval_request) | |
| # Check the corresponding result | |
| from typing import Optional | |
| eval_result: Optional[EvalResult] = ( | |
| result_name_to_result[result_name] if result_name in result_name_to_result else None | |
| ) | |
| # Iterate over tasks and, if we do not have results for a task, run the relevant evaluations | |
| for task in TASKS_HARNESS: | |
| task_name = task.benchmark | |
| if eval_result is None or task_name not in eval_result.results: | |
| eval_request: EvalRequest = result_name_to_request[result_name] | |
| # print(eval_result) | |
| print(result_name, "is incomplete -- missing task:", task_name, eval_result, eval_request.likes) | |
| if __name__ == "__main__": | |
| res = process_finished_requests() | |