Spaces:
Running
Running
| #!/usr/bin/env python3 | |
| import glob | |
| import os | |
| import random | |
| from tqdm import tqdm | |
| from datasets import Dataset, DatasetDict, load_dataset | |
| def convert(list_of_dicts): | |
| res = {} | |
| for d in list_of_dicts: | |
| for k, v in d.items(): | |
| res.setdefault(k, []).append(v) | |
| return res | |
| v10 = load_dataset("fever", "v1.0") | |
| name_lst = ['train', 'labelled_dev'] | |
| old_to_new_label_map = { | |
| 'SUPPORTS': 'supported', | |
| 'REFUTES': 'refuted' | |
| } | |
| data_map = {} | |
| for name in name_lst: | |
| instance_lst = [] | |
| for entry in tqdm(v10[name]): | |
| id_ = entry['id'] | |
| label = entry['label'] | |
| claim = entry['claim'] | |
| evidence_id = entry['evidence_id'] | |
| evidence_wiki_url = entry['evidence_wiki_url'] | |
| if evidence_id != -1: | |
| assert label in {'SUPPORTS', 'REFUTES'} | |
| instance = {'id': id_, 'label': old_to_new_label_map[label], 'claim': claim} | |
| instance_lst.append(instance) | |
| key = 'dev' if name in {'labelled_dev'} else name | |
| instance_lst = sorted([dict(t) for t in {tuple(d.items()) for d in instance_lst}], key=lambda d: d['claim']) | |
| label_to_instance_lst = {} | |
| for e in instance_lst: | |
| if e['label'] not in label_to_instance_lst: | |
| label_to_instance_lst[e['label']] = [] | |
| label_to_instance_lst[e['label']].append(e) | |
| min_len = min(len(v) for k, v in label_to_instance_lst.items()) | |
| new_instance_lst = [] | |
| for k in sorted(label_to_instance_lst.keys()): | |
| new_instance_lst += label_to_instance_lst[k][:min_len] | |
| random.Random(42).shuffle(new_instance_lst) | |
| data_map[key] = new_instance_lst | |
| ds_path = 'pminervini/hl-fever' | |
| task_to_ds_map = {k: Dataset.from_dict(convert(v)) for k, v in data_map.items()} | |
| ds_dict = DatasetDict(task_to_ds_map) | |
| ds_dict.push_to_hub(ds_path, "v1.0") | |
| # breakpoint() | |