Spaces:
Running
Running
| from dataclasses import dataclass, make_dataclass | |
| from enum import Enum | |
| import pandas as pd | |
| def fields(raw_class): | |
| return [v for k, v in raw_class.__dict__.items() if k[:2] != "__" and k[-2:] != "__"] | |
| E2Es = "E2E(s)" #"End-to-end time (s)" | |
| PREs = "PRE(s)" #"Prefilling time (s)" | |
| TS = "Decoding T/s" #Decoding throughput (tok/s) | |
| PTS = "Prefill T/s" #Prefill throughput (tok/s) | |
| InFrame = "Method" #"Inference framework" | |
| MULTIPLE_CHOICEs = ["mmlu"] | |
| GPU_TEMP = 'Temp(C)' | |
| GPU_Power = 'Power(W)' | |
| GPU_Mem = 'Mem(G)' | |
| GPU_Name = "GPU" | |
| GPU_Util = 'Util(%)' | |
| DSMFU = 'Decoding S-MFU(%)' | |
| DSMBU = 'Decoding S-MBU(%)' | |
| PSMFU = 'Prefill S-MFU(%)' | |
| PSMBU = 'Prefill S-MBU(%)' | |
| BATCH_SIZE = 'bs' | |
| PRECISION = "Precision" | |
| system_metrics_to_name_map = { | |
| "end_to_end_time": f"{E2Es}", | |
| "prefilling_time": f"{PREs}", | |
| "decoding_throughput": f"{TS}", | |
| "decoding_mfu": f"{DSMFU}", | |
| "decoding_mbu": f"{DSMBU}", | |
| "prefill_throughput": f"{PTS}", | |
| "prefill_mfu": f"{PSMFU}", | |
| "prefill_mbu": f"{PSMBU}", | |
| } | |
| gpu_metrics_to_name_map = { | |
| GPU_Util: GPU_Util, | |
| GPU_TEMP: GPU_TEMP, | |
| GPU_Power: GPU_Power, | |
| GPU_Mem: GPU_Mem, | |
| "batch_size": BATCH_SIZE, | |
| "precision": PRECISION, | |
| GPU_Name: GPU_Name | |
| } | |
| class Task: | |
| benchmark: str | |
| metric: str | |
| col_name: str | |
| class Tasks(Enum): | |
| # XXX include me back at some point | |
| # nqopen = Task("nq8", "em", "NQ Open/EM") | |
| # triviaqa = Task("tqa8", "em", "TriviaQA/EM") | |
| # truthfulqa_mc1 = Task("truthfulqa_mc1", "acc", "TruthQA MC1/Acc") | |
| # truthfulqa_mc2 = Task("truthfulqa_mc2", "acc", "TruthQA MC2/Acc") | |
| # truthfulqa_gen = Task("truthfulqa_gen", "rougeL_acc", "TruthQA Gen/ROUGE") | |
| # xsum_r = Task("xsum_v2", "rougeL", "XSum/ROUGE") | |
| # xsum_f = Task("xsum_v2", "factKB", "XSum/factKB") | |
| # xsum_b = Task("xsum_v2", "bertscore_precision", "XSum/BERT-P") | |
| # cnndm_r = Task("cnndm_v2", "rougeL", "CNN-DM/ROUGE") | |
| # cnndm_f = Task("cnndm_v2", "factKB", "CNN-DM/factKB") | |
| # cnndm_b = Task("cnndm_v2", "bertscore_precision", "CNN-DM/BERT-P") | |
| # race = Task("race", "acc", "RACE/Acc") | |
| # squadv2 = Task("squadv2", "exact", "SQUaDv2/EM") | |
| # memotrap = Task("memo-trap_v2", "acc", "MemoTrap/Acc") | |
| # ifeval = Task("ifeval", "prompt_level_strict_acc", "IFEval/Acc") | |
| # faithdial = Task("faithdial_hallu_v2", "acc", "FaithDial/Acc") | |
| # halueval_qa = Task("halueval_qa", "acc", "HaluQA/Acc") | |
| # halueval_summ = Task("halueval_summarization", "acc", "HaluSumm/Acc") | |
| # halueval_dial = Task("halueval_dialogue", "acc", "HaluDial/Acc") | |
| # # XXX include me back at some point | |
| # selfcheck = Task("selfcheckgpt", "max-selfcheckgpt", "SelfCheckGPT") | |
| # selfcheck = Task("selfcheckgpt", "max-selfcheckgpt", "SelfCheckGPT") | |
| gsm8k = Task("gsm8k_custom", "em", "GSM8K") #GSM8K/EM (5-shot) | |
| # gsm8k_cot = Task("gsm8k_cot", "em", "GSM8K COT") #GSM8K COT/EM (5-shot) | |
| arena_hard = Task("arena_hard", "score", "Arena Hard") #Arena Hard/Score | |
| mmlu = Task("mmlu", "acc", "MMLU") #MMLU/Acc (5-shot) | |
| # These classes are for user facing column names, | |
| # to avoid having to change them all around the code | |
| # when a modif is needed | |
| class ColumnContent: | |
| name: str | |
| type: str | |
| displayed_by_default: bool | |
| hidden: bool = False | |
| never_hidden: bool = False | |
| dummy: bool = False | |
| auto_eval_column_dict = [] | |
| # Init | |
| auto_eval_column_dict.append(["model_type_symbol", ColumnContent, ColumnContent("T", "str", True, never_hidden=True)]) | |
| auto_eval_column_dict.append(["model", ColumnContent, ColumnContent("Model", "markdown", True, never_hidden=True)]) | |
| # #Scores | |
| # # auto_eval_column_dict.append(["average", ColumnContent, ColumnContent("Avg", "number", True)]) | |
| # Inference framework | |
| auto_eval_column_dict.append(["inference_framework", ColumnContent, ColumnContent(f"{InFrame}", "str", True, dummy=True)]) | |
| for task in Tasks: | |
| auto_eval_column_dict.append([task.name, ColumnContent, ColumnContent(task.value.col_name, "number", True)]) | |
| # System performance metrics | |
| auto_eval_column_dict.append([f"{task.name}_end_to_end_time", ColumnContent, ColumnContent(f"{task.value.col_name} {E2Es}", "number", True, hidden=True)]) | |
| auto_eval_column_dict.append([f"{task.name}_batch_size", ColumnContent, ColumnContent(f"{task.value.col_name} {BATCH_SIZE}", "number", True, hidden=True)]) | |
| # auto_eval_column_dict.append([f"{task.name}_precision", ColumnContent, ColumnContent(f"{task.value.col_name} {PRECISION}", "str", True, hidden=True)]) | |
| # auto_eval_column_dict.append([f"{task.name}_gpu_mem", ColumnContent, ColumnContent(f"{task.value.col_name} {GPU_Mem}", "number", True, hidden=True)]) | |
| auto_eval_column_dict.append([f"{task.name}_gpu", ColumnContent, ColumnContent(f"{task.value.col_name} {GPU_Name}", "str", True, hidden=True)]) | |
| # auto_eval_column_dict.append([f"{task.name}_gpu_util", ColumnContent, ColumnContent(f"{task.value.col_name} {GPU_Util}", "number", True, hidden=True)]) | |
| auto_eval_column_dict.append([f"{task.name}_prefilling_time", ColumnContent, ColumnContent(f"{task.value.col_name} {PREs}", "number", False, hidden=True)]) | |
| if task.value.benchmark in MULTIPLE_CHOICEs: | |
| continue | |
| auto_eval_column_dict.append([f"{task.name}_decoding_throughput", ColumnContent, ColumnContent(f"{task.value.col_name} {TS}", "number", True, hidden=True)]) | |
| # if task.value.benchmark != "gsm8k_custom": | |
| # continue | |
| auto_eval_column_dict.append([f"{task.name}_decoding_mbu", ColumnContent, ColumnContent(f"{task.value.col_name} {DSMBU}", "number", True, hidden=True)]) | |
| auto_eval_column_dict.append([f"{task.name}_decoding_mfu", ColumnContent, ColumnContent(f"{task.value.col_name} {DSMFU}", "number", True, hidden=True)]) | |
| auto_eval_column_dict.append([f"{task.name}_prefill_throughput", ColumnContent, ColumnContent(f"{task.value.col_name} {PTS}", "number", True, hidden=True)]) | |
| auto_eval_column_dict.append([f"{task.name}_prefill_mbu", ColumnContent, ColumnContent(f"{task.value.col_name} {PSMBU}", "number", True, hidden=True)]) | |
| auto_eval_column_dict.append([f"{task.name}_prefill_mfu", ColumnContent, ColumnContent(f"{task.value.col_name} {PSMFU}", "number", True, hidden=True)]) | |
| # Model information | |
| auto_eval_column_dict.append(["model_type", ColumnContent, ColumnContent("Type", "str", False, dummy=True)]) | |
| # auto_eval_column_dict.append(["architecture", ColumnContent, ColumnContent("Architecture", "str", False)]) | |
| # auto_eval_column_dict.append(["weight_type", ColumnContent, ColumnContent("Weight type", "str", False, True)]) | |
| auto_eval_column_dict.append(["precision", ColumnContent, ColumnContent("Precision", "str", True, dummy=True)]) | |
| # auto_eval_column_dict.append(["license", ColumnContent, ColumnContent("Hub License", "str", False)]) | |
| # auto_eval_column_dict.append(["params", ColumnContent, ColumnContent("#Params (B)", "number", False)]) | |
| # auto_eval_column_dict.append(["likes", ColumnContent, ColumnContent("Hub β€οΈ", "number", False)]) | |
| # auto_eval_column_dict.append(["still_on_hub", ColumnContent, ColumnContent("Available on the hub", "bool", False)]) | |
| # auto_eval_column_dict.append(["revision", ColumnContent, ColumnContent("Model sha", "str", False, False)]) | |
| # Dummy column for the search bar (hidden by the custom CSS) | |
| auto_eval_column_dict.append(["dummy", ColumnContent, ColumnContent("model_name_for_query", "str", False, dummy=True)]) | |
| # We use make dataclass to dynamically fill the scores from Tasks | |
| AutoEvalColumn = make_dataclass("AutoEvalColumn", auto_eval_column_dict, frozen=True) | |
| class EvalQueueColumn: # Queue column | |
| model = ColumnContent("model", "markdown", True) | |
| revision = ColumnContent("revision", "str", True) | |
| private = ColumnContent("private", "bool", True) | |
| precision = ColumnContent("precision", "str", True) | |
| weight_type = ColumnContent("weight_type", "str", "Original") | |
| model_framework = ColumnContent("inference_framework", "str", True) | |
| status = ColumnContent("status", "str", True) | |
| class ModelDetails: | |
| name: str | |
| symbol: str = "" # emoji, only for the model type | |
| class ModelType(Enum): | |
| # PT = ModelDetails(name="pretrained", symbol="π’") | |
| # FT = ModelDetails(name="fine-tuned on domain-specific datasets", symbol="πΆ") | |
| chat = ModelDetails(name="chat models (RLHF, DPO, IFT, ...)", symbol="π¬") | |
| # merges = ModelDetails(name="base merges and moerges", symbol="π€") | |
| Unknown = ModelDetails(name="", symbol="?") | |
| def to_str(self, separator=" "): | |
| return f"{self.value.symbol}{separator}{self.value.name}" | |
| def from_str(type): | |
| # if "fine-tuned" in type or "πΆ" in type: | |
| # return ModelType.FT | |
| # if "pretrained" in type or "π’" in type: | |
| # return ModelType.PT | |
| if any([k in type for k in ["instruction-tuned", "RL-tuned", "chat", "π¦", "β", "π¬"]]): | |
| return ModelType.chat | |
| # if "merge" in type or "π€" in type: | |
| # return ModelType.merges | |
| return ModelType.Unknown | |
| class InferenceFramework(Enum): | |
| # "moe-infinity", hf-chat | |
| # MoE_Infinity = ModelDetails("moe-infinity") | |
| HF_Chat = ModelDetails("hf-chat") | |
| VLLM = ModelDetails("vllm_moe") | |
| VLLM_FIX = ModelDetails("vllm_moe_fixbs") | |
| TRTLLM = ModelDetails("tensorrt_llm") | |
| SGLANG = ModelDetails("sglang") | |
| Unknown = ModelDetails("?") | |
| def to_str(self): | |
| return self.value.name | |
| def from_str(inference_framework: str): | |
| # if inference_framework in ["moe-infinity"]: | |
| # return InferenceFramework.MoE_Infinity | |
| if inference_framework in ["tensorrt_llm"]: | |
| return InferenceFramework.TRTLLM | |
| if inference_framework in ["hf-chat"]: | |
| return InferenceFramework.HF_Chat | |
| if inference_framework in ["vllm_moe"]: | |
| return InferenceFramework.VLLM | |
| if inference_framework in ["vllm_moe_fixbs"]: | |
| return InferenceFramework.VLLM_FIX | |
| if inference_framework in ["sglang"]: | |
| return InferenceFramework.SGLANG | |
| return InferenceFramework.Unknown | |
| class GPUType(Enum): | |
| A100_sxm = ModelDetails("NVIDIA-A100-SXM4-80GB") | |
| A100_sxm4 = ModelDetails("NVIDIA-A100-SMX4-80GB") | |
| A100_pcie = ModelDetails("NVIDIA-A100-PCIe-80GB") | |
| Unknown = ModelDetails("?") | |
| def to_str(self): | |
| return self.value.name | |
| def from_str(gpu_type: str): | |
| if gpu_type in ["NVIDIA-A100-PCIe-80GB"]: | |
| return GPUType.A100_pcie | |
| if gpu_type in ["NVIDIA-A100-SXM4-80GB"]: | |
| return GPUType.A100_sxm | |
| return GPUType.Unknown | |
| class WeightType(Enum): | |
| Adapter = ModelDetails("Adapter") | |
| Original = ModelDetails("Original") | |
| Delta = ModelDetails("Delta") | |
| class Precision(Enum): | |
| # float32 = ModelDetails("float32") | |
| # float16 = ModelDetails("float16") | |
| bfloat16 = ModelDetails("bfloat16") | |
| qt_8bit = ModelDetails("8bit") | |
| qt_4bit = ModelDetails("4bit") | |
| # qt_GPTQ = ModelDetails("GPTQ") | |
| Unknown = ModelDetails("?") | |
| def from_str(precision: str): | |
| # if precision in ["torch.float32", "float32"]: | |
| # return Precision.float32 | |
| # if precision in ["torch.float16", "float16"]: | |
| # return Precision.float16 | |
| if precision in ["torch.bfloat16", "bfloat16"]: | |
| return Precision.bfloat16 | |
| if precision in ["8bit"]: | |
| return Precision.qt_8bit | |
| if precision in ["4bit"]: | |
| return Precision.qt_4bit | |
| # if precision in ["GPTQ", "None"]: | |
| # return Precision.qt_GPTQ | |
| return Precision.Unknown | |
| # Column selection | |
| COLS = [c.name for c in fields(AutoEvalColumn)] | |
| TYPES = [c.type for c in fields(AutoEvalColumn)] | |
| COLS_LITE = [c.name for c in fields(AutoEvalColumn) if c.displayed_by_default and not c.hidden] | |
| TYPES_LITE = [c.type for c in fields(AutoEvalColumn) if c.displayed_by_default and not c.hidden] | |
| EVAL_COLS = [c.name for c in fields(EvalQueueColumn)] | |
| EVAL_TYPES = [c.type for c in fields(EvalQueueColumn)] | |
| BENCHMARK_COLS = [t.value.col_name for t in Tasks] | |
| # NUMERIC_INTERVALS = { | |
| # "?": pd.Interval(-1, 0, closed="right"), | |
| # "~1.5": pd.Interval(0, 2, closed="right"), | |
| # "~3": pd.Interval(2, 4, closed="right"), | |
| # "~7": pd.Interval(4, 9, closed="right"), | |
| # "~13": pd.Interval(9, 20, closed="right"), | |
| # "~35": pd.Interval(20, 45, closed="right"), | |
| # "~60": pd.Interval(45, 70, closed="right"), | |
| # "70+": pd.Interval(70, 10000, closed="right"), | |
| # } | |